Answer:
![L=0.0045\ kg-m^2/s](https://img.qammunity.org/2021/formulas/physics/college/fxd2miwzk1vqnqc2uhr1yhgpmmpjxiw3ua.png)
Step-by-step explanation:
Given that,
The mass of a golf ball, m = 40 g = 0.04 kg
Its angular velocity,
![\omega=4300\ rpm=450.29\ rad/s](https://img.qammunity.org/2021/formulas/physics/college/hjpzaabb5bqbs3qbsj48s9yr0e3dgwbbve.png)
The radius of the sphere is 2.5 cm or 0.025 m
We need to find the magnitude of the angular momentum of the ball. It is given by the formula as follows:
![L=I\omega](https://img.qammunity.org/2021/formulas/physics/college/m6pnwp394pu9zkj6uelfiusg1mvikiilcq.png)
Where I is moment of inertia
For sphere,
![I=(2)/(5)mr^2](https://img.qammunity.org/2021/formulas/physics/college/yr4nxyl1q2rcb89j5il7w0ajdqbgu2579a.png)
![L=(2)/(5)mr^2\omega\\\\L=(2)/(5)* 0.04* (0.025)^2* 450.29\\\\L=0.0045\ kg-m^2/s](https://img.qammunity.org/2021/formulas/physics/college/s75z0qyiqkb90enwkolzfhp1dwhaw2261g.png)
So, the magnitude of the angular momentum of the sphere is
.