25.7k views
5 votes
An individual who has automobile insurance from a certain company is randomly selected. Let Y be the number of moving violations for which the individual was cited during the past 3 years. The pmf of Y is:

y 0 1 2 3
P(y) 0.50 0.25 0.20 0.05

Required:
a. Compute E(Y) and V(3Y−10)
b. Suppose an individual with Y violations incurs a surcharge of $(95Y2−25). Calculate the expected amount of the surcharge.
c. What is the standard deviation of surcharges?

User JMarsch
by
7.9k points

1 Answer

5 votes

Answer:

a.

E(y)=0.8

V(3y-10)=7.74

b.

The expected amount of surcharge is 117.5.

c.

The standard deviation of surcharges is 217.6723.

Explanation:

a.

y 0 1 2 3

p(y) 0.5 0.25 0.2 0.05

y*p(y) 0 0.25 0.4 0.15

E(y)=sum(y*p(y))=0+0.25+0.4+0.15

E(y)=0.8.

y² 0 1 4 9

y²p(y) 0 0.25 0.8 0.45

V(y)=E(y²)-[E(y)]²

E(y²)=sum(y²*p(y))=0+0.25+0.8+0.45=1.5

V(y)=E(y²)-[E(y)]²

V(y)=1.5-[0.8]²

V(y)=1.5-0.64

V(y)=0.86

V(3y-10)=9V(y)=9*0.86=7.74

V(3y-10)=7.74

b.

E(95Y²-25)=95E(Y²)-25=95*1.5-25=142.5-25=117.5

E(95Y²-25)=117.5

The expected amount of surcharge is 117.5.

c.

SD(95Y²-25)=?

SD(95Y²-25)=√V(95Y²-25)

V(95Y²-25)=95²*V(Y²)

V(95Y²-25)=9025*V(Y²)

V(Y²)=E[(Y²)²]-[E(Y²)]²

y^4 0 1 16 81

y^4*p(y) 0 0.25 3.2 4.05

E[(Y²)²]=sum(y^4*p(y))=7.5

V(Y²)=E[(Y²)²]-[E(Y²)]²

V(Y²)=7.5-[1.5]²

V(Y²)=7.5-2.25

V(Y²)=5.25

V(95Y²-25)=9025*V(Y²)

V(95Y²-25)=9025*5.25

V(95Y²-25)=47381.25

SD(95Y²-25)=√47381.25

SD(95Y²-25)=217.6723

The standard deviation of surcharges is 217.6723.

User Adnan Aftab
by
8.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.