Answer:
Explanation:
If we consider a triangle with the length of the hypotenuse being equal to 1 and the length of the opposite side = 3x.
However, recall that in a right-angle triangle;
SIne = opposite/hypothenuse
Thus; let the angle facing the opposite be y
Then;
SIn y = 3x/1
Sin y = 3x
Thus, y = arcsin (3x)
Now; to find cos(arcsin 3x)
Recall that:
Cosine = adjacent/hypotenuse
Now, using Pythagoras rule;
![\mathsf{Adjacent \ side = √((hypotenuse)^2 -(opposite^2))}](https://img.qammunity.org/2021/formulas/mathematics/college/qhqt7kizybc4e1ud4hbqweva7errox8cqq.png)
![\mathsf{Adjacent \ side = √((1)^2 -(3x^2))}](https://img.qammunity.org/2021/formulas/mathematics/college/s72t0pcftzkw8i3lijlp8yptoqi7sut84l.png)
![\mathsf{Adjacent \ side = √(1 -9x^2)}](https://img.qammunity.org/2021/formulas/mathematics/college/5pvrirnkj9sx9k57y6ra50ucgnokdeyfav.png)
cos(arcsin 3x) = cos y = adjacent side/hypotenuse =
![(√(1 -9x^2))/(1)](https://img.qammunity.org/2021/formulas/mathematics/college/8kazwg8696829chcew99pctb03tjo84eod.png)
cos(arcsin 3x) =
![(√(1 -9x^2))/(1)](https://img.qammunity.org/2021/formulas/mathematics/college/8kazwg8696829chcew99pctb03tjo84eod.png)