Answer:
22.4 ft
Explanation:
Given
![Height = 2.5ft](https://img.qammunity.org/2021/formulas/mathematics/high-school/1r6cxd509xdmuflzzkhyyy05agvrt901on.png)
![Shadow = 4ft](https://img.qammunity.org/2021/formulas/mathematics/high-school/7yhptz241355bbjjhidgko19ttk2ebhzo3.png)
Required
Determine the shadow of 14 ft Tom
The given parameters represents direct variation.
Let x represents the shadow of Tom.
So, we have:
When
![2.5ft\ height = 4ft\ Shadow](https://img.qammunity.org/2021/formulas/mathematics/high-school/tuoka218vnc6317poe9xn0hwxgr6npwrea.png)
![14ft\ height = x](https://img.qammunity.org/2021/formulas/mathematics/high-school/3fub7eyns6k873ifekn4okp2r7eobjkac3.png)
Cross Multiply:
![2.5 * x = 14 * 4](https://img.qammunity.org/2021/formulas/mathematics/high-school/72xzo1yk599jhxwf5wuc8i8paudbnwf8ou.png)
![2.5 * x = 56](https://img.qammunity.org/2021/formulas/mathematics/high-school/63swla7b6g75hjz0zk6y8r16pcyxal7uhs.png)
Solve for x
![x = 56/2.5](https://img.qammunity.org/2021/formulas/mathematics/high-school/irqt9mqk3wp1pcnjqo9wijycqxm0doy2ia.png)
![x = 22.4](https://img.qammunity.org/2021/formulas/mathematics/high-school/qe4dzzmzx6ls2cka2dv1vc59y9mjbqvfat.png)
Hence, the height of the shadow is 22.4ft