Answer:
Calculate P(1)
Explanation:
Given
P(x)
![Divisor = x - 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/oa6o18sb1c5eus1k5cmoo6iwza6sxwzvc4.png)
Required
How to determine the remainder
First, you equate the divisor to 0 to solve for x
i.e.
![x - 1 = 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/asz85kqn2b4i5cy1z0t81n7epbcvg0pex6.png)
![x = 1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/9h91c1kjchcke1mwwyxiajkyxryboly84u.png)
Next, substitute 1 for x in P(x)
Then solve for P(1)
Take for instance;
If
![P(x) = x^3 - x^2 - 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/u5rgpy2t6zx863260t8pttnu69wvb7644c.png)
Substitute 1 for x
![P(1) = 1^3 - 1^2 - 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/fjmq1riqnn302ts80bll1eah5o32qxedth.png)
![P(1) = 1 - 1 - 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/gpzum94qalranuqq5k7kraufx2vbuiv7rl.png)
![P(1) = - 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/4nz1bga8b3qskikn52lpsnr0akj83cvypk.png)
Hence, the remainder is -1