77.9k views
4 votes
The function f(x) = x is translated using the rule (x, y) - (x - 6, y + 9) to create A(x).

Which expression describes the range of A(x)?
Oy2-9
Oy6
Oy26
O y29

2 Answers

7 votes

Answer:

d on 3dge

Explanation:

genius

User Hakunamatata
by
4.2k points
5 votes

It seems the correct function you need to mention is f(x) = sqrt x

so, I am assuming
f(x) = √(x) and will solve the question based on it.

Answer:

Check the explanation

Explanation:

Given the function


f(x) = √(x)

As the function is translated according to the rule

  • (x, y) → (x - 6, y + 9)

Translation of the function
f(x) = √(x) 6 units to the left will bring the function


g(x) = √(x+6)

Translation of the function
g(x) = √(x+6) 9 units up will bring the function


A\left(x\right)=√(x+6)+9

Determining the range of
A\left(x\right)=√(x+6)+9

  • As we know that the range is the set of dependent values for which the function is defined.


\mathrm{The\:range\:of\:an\:radical\:function\:of\:the\:form}\:c√(ax+b)+k\:\mathrm{is}\:\:f\left(x\right)\ge \:k


k=9


f\left(x\right)\ge \:9

so


\mathrm{Range\:of\:}√(x+6)+9:\quad \begin{bmatrix}\mathrm{Solution:}\:&\:f\left(x\right)\ge \:9\:\\ \:\mathrm{Interval\:Notation:}&\:[9,\:\infty \:)\end{bmatrix}

Therefore, the expression describes the range of A(x) will be:


f\left(x\right)\ge \:\:9\:or\:y\:\ge \:\:\:9

User Stefano Lonati
by
4.5k points