Answer:
![\displaystyle x=(-3+√(6))/(3)\text{ and } x=(-3-√(6))/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zgjy7e3ntcezfcdxkklpac0ibul8q0drx0.png)
Or, by approximating:
![x\approx-0.1835\text{ or } x\approx -1.8165](https://img.qammunity.org/2021/formulas/mathematics/high-school/m0lw89lgj9uwd16p156iu5tof6cucjh1ag.png)
Explanation:
Let’s convert this to standard form. We have:
![-6x-1+5x^2=8x^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/6fs7mw55r1vnr83qisfrgmywsu9vvjxfxv.png)
Subtract 5x² from both sides:
![-6x-1=3x^2](https://img.qammunity.org/2021/formulas/mathematics/high-school/m9yorkzh0p6ofqsawskcrbzzb5wuz7948y.png)
And add 6x and 1 to both sides:
![0=3x^2+6x+1](https://img.qammunity.org/2021/formulas/mathematics/high-school/rkj27j8eq1tfu3ygo7zyuj6t25wtvvvqd2.png)
This is not factorable. So, we will need to use the quadratic formula.
The quadratic formula for a quadratic in standard form is given by:
![\displaystyle x=(-b\pm√(b^2-4ac))/(2a)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/5jwwo0i0w7w61tf80w57kzft5h2wos98op.png)
In this case, a=3; b=6, and c=1.
Substitute appropriately:
![\displaystyle x=(-6\pm√(6^2-4(3)(1)))/(2(3))](https://img.qammunity.org/2021/formulas/mathematics/high-school/sprp6a5t4su1qw1g5seqo1j4fyiksp8srd.png)
Simplify:
![\displaystyle x=(-6\pm√(24))/(6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ftd689nr7l4wvckseabfnjig5g36x26zul.png)
We can simplify the square root:
![√(24)=√(4)\cdot√(6)=2√(6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gl3vw3b2v3ams7r9fcu3veu3fz6n0jz3ot.png)
Hence:
![\displaystyle x=(-6\pm2√(4))/(6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ytjgf6bllw1wph7cf53cszqmzbthsmk0rb.png)
Simplify:
![\displaystyle x=(-3\pm√(6))/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/fs5nfibfxichydccmximo8rdzy27xtywdy.png)
Hence, we will have two solutions:
![\displaystyle x=(-3+√(6))/(3)\text{ and } x=(-3-√(6))/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zgjy7e3ntcezfcdxkklpac0ibul8q0drx0.png)
Approximating them, we can see that our solutions are approximately:
![x\approx-0.1835\text{ or } x\approx -1.8165](https://img.qammunity.org/2021/formulas/mathematics/high-school/m0lw89lgj9uwd16p156iu5tof6cucjh1ag.png)