64.2k views
5 votes
The point (2, 1) is a solution to which of the following systems of equations?

2x + y = 5 and −2x + y = 2
−2x − y = −5 and 2x − y = 2
−x + y = 3 and −3x + y = −5
x + y = 3 and 3x − y = 5

1 Answer

2 votes


\huge\boxed{\left \{ {{x+y=3} \atop {3x-y=5}} \right.}

We can solve this problem by testing the solution against each system of equations. We'll do this by substituting the point into each equation for each system.

System 1 -
\Large\textbf{X}


\begin{array}c\textbf{First Equation}&\textbf{Second Equation}\\\cline{1-2}\begin{aligned}2x+y&=5\\2(2)+1&=5\\4+1&=5\\5&=5\\&\checkmark\end{aligned}&\begin{aligned}-2x+y&=2\\-2(2)+1&=2\\-4+1&=2\\-3&=2\\&\text{X}\end{aligned}\end{array}

System 2 -
\Large\textbf{X}


\begin{array}c\textbf{First Equation}&\textbf{Second Equation}\\\cline{1-2}\begin{aligned}-2x-y&=-5\\-2(2)-1&=-5\\-4-1&=-5\\-5&=-5\\&\checkmark\end{aligned}&\begin{aligned}2x-y&=2\\2(2)-1&=2\\4-1&=2\\3&=2\\&\text{X}\end{aligned}\end{array}

System 3 -
\Large\textbf{X}


\begin{array}c\textbf{First Equation}&\textbf{Second Equation}\\\cline{1-2}\begin{aligned}-x+y&=3\\-2+1&=3\\-1&=3\\&\text{X}\end{aligned}&\begin{aligned}-3x+y&=-5\\-3(2)+1&=-5\\-6+1&=-5\\-5&=-5\\&\checkmark\end{aligned}\end{array}

System 4 -
\Large\checkmark


\begin{array}c\textbf{First Equation}&\textbf{Second Equation}\\\cline{1-2}\begin{aligned}x+y&=3\\2+1&=3\\3&=3\\&\checkmark\end{aligned}&\begin{aligned}3x-y&=5\\3(2)-1&=5\\6-1&=5\\5&=5\\&\checkmark\end{aligned}\end{array}

Since both equations in the final system are true when solved with
(2, 1), the answer is the last system.

User Riley Dutton
by
8.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories