48.4k views
5 votes
Consider w=sqrrt2/2(cos(225°) + isin(225°)) and z = 1(cos(60°) + isin(60°)). What is w+ z expressed in rectangular form?

Consider w=sqrrt2/2(cos(225°) + isin(225°)) and z = 1(cos(60°) + isin(60°)). What-example-1

1 Answer

6 votes

Answer:

Option (3)

Explanation:

w =
(√(2))/(2)[\text{cos}(225) + i\text{sin}(225)]

Since, cos(225) = cos(180 + 45)

= -cos(45) [Since, cos(180 + θ) = -cosθ]

= -
(√(2))/(2)

sin(225) = sin(180 + 45)

= -sin(45)

= -
(√(2))/(2)

Therefore, w =
(√(2))/(2)[-(√(2))/(2)+i(-(√(2))/(2))]

=
-(2)/(4)(1+i)

=
-(1)/(2)(1+i)

z = 1[cos(60) + i(sin(60)]

=
[(1)/(2)+i((√(3))/(2))

=
(1)/(2)(1+i√(3))

Now (w + z) =
-(1)/(2)(1+i)+(1)/(2)(1+i√(3))

=
-(1)/(2)-(i)/(2)+(1)/(2)+i(√(3))/(2)

=
((i√(3)-i))/(2)

=
((√(3)-1)i)/(2)

Therefore, Option (3) will be the correct option.

User Jane Kathambi
by
6.1k points