94.4k views
4 votes
Consider the following Theorem: If A B and C are angles of an oblique, non-right, triangle, then Tan(A) + Tan(B) + Tan(C) = Tan(A)Tan(B)Tan(C). Choose values for A, B, and C, then verify that the conclusion is true for your specific values.

Show all of your work and attach it with the answer.

User Dsldsl
by
5.7k points

1 Answer

3 votes

Answer:

tan A + tan B + tan C = tan A tan B tan C

Explanation:

Explanation:-

proof:-

Given A B and C are angles of an oblique, non-right, triangle

we know that A+B+C = 180

A+B = 180 - C

Apply ' tan' on both sides , we get

Tan(A+B) = Tan ( 180 - C)


(tan A+ tan B)/(1-tanA tan B) = tan( 180 -C)

tan A + tan B = - tan(180- C) ( 1 - tan A tan B )

tan A + tan B = - tan C ( 1 - tan A tan B )

tan A + tan B = - tan C + tan A tan B tan C

tan A + tan B + tan C = tan A tan B tan C

User SamIAm
by
4.7k points