Answer:
0.287 m
Step-by-step explanation:
The velocity of block A when it reaches block B is:
KE₀ = KE + W
½ mv₀² = ½ mv² + Fd
½ mv₀² = ½ mv² + mg μ d
v₀² = v² + 2g μ d
v² = v₀² − 2g μ d
v² = (10 m/s)² − 2 (9.8 m/s²) (0.3) (4 m)
v = 8.75 m/s
The coefficient of restitution is 0.6, so the relative velocity between A and B after the collision is:
e = |Δv after| / |Δv before|
0.6 = Δv / (8.75 m/s)
Δv = 5.25 m/s
Momentum is conserved, so the speed of block B after the collision is:
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
(15 kg) (8.75 m/s) + (10 kg) (0 m/s) = (15 kg) (v) + (10 kg) (v + 5.25 m/s)
131.2 m/s = 25v + 52.5 m/s
25v = 78.7 m/s
v = 3.15 m/s
Energy is conserved, so the compression of the spring is:
KE = EE + W
½ mv² = ½ kd² + Fd
½ mv² = ½ kd² + mg μ d
½ (10 kg) (3.15 m/s)² = ½ (1000 N/m) d² + (10 kg) (9.8 m/s²) (0.3) d
49.6 = 500 d² + 29.4 d
0 = 500 d² + 29.4 d − 49.6
d = [ -29.4 ± √(29.4² − 4(500)(-49.6)) ] / 1000
d = (-29.4 ± 316.2) / 1000
d = 0.287 m