21.5k views
2 votes
In ΔVWX, \text{m}\angle V = (7x-1)^{\circ}m∠V=(7x−1) ∘ , \text{m}\angle W = (4x+16)^{\circ}m∠W=(4x+16) ∘ , and \text{m}\angle X = (3x-17)^{\circ}m∠X=(3x−17) ∘ . Find \text{m}\angle X.M∠X.

User Aspen Chen
by
9.2k points

1 Answer

2 votes

Answer:

m∠X= 22°

Explanation:

In ΔVWX:

m∠V=(7x−1) ∘

m∠W=(4x+16) ∘ ,

m∠X=(3x−17) ∘ . Find M∠X.

Step 1

We find the variable x

The sum of angles in a triangle is 180°

Hence,

ΔVWX = m∠V + m∠W +m∠X

180° = (7x - 1)° + (4x + 16)° + (3x - 17)°

180° = 7x - 1 + 4x + 16 + 3x - 17

180° = 7x + 4x + 3x - 1 + 16 - 17

180° = 14x -2

Collect like terms

180° + 2 = 14x

182° = 14x

x = 182°/14

x = 13°

Step 2

We find m∠X

m∠X = (3x−17) ∘

x = 13

m∠X = (3 × 13 − 17)°

m∠X = (39 − 17)°

m∠X = 22°

User Kyle Campos
by
7.9k points