149k views
1 vote
4(3xy^4)^3/(2x^3y^5)^4

User Diegovilar
by
4.3k points

1 Answer

5 votes

Answer:


(4\left(3xy^4\right)^3)/(\left(2x^3y^5\right)^4)=(27)/(4x^9y^8)

Explanation:

Given the expression


\:\:(4\left(3xy^4\right)^3)/(\left(2x^3y^5\right)^4)

solving the expression


\:\:(4\left(3xy^4\right)^3)/(\left(2x^3y^5\right)^4)=4\cdot \:(\left(3xy^4\right)^3)/(\left(2x^3y^5\right)^4)


=4\:(27x^3y^(12))/(16x^(12)y^(20))


=4\cdot (3^3)/(2^4x^9y^8)

The multiply fractions are defined as


\:a\cdot (b)/(c)=(a\:\cdot \:b)/(c)

so the expression becomes


=(3^3\cdot \:4)/(2^4x^9y^8)


=(3^3\cdot \:2^2)/(2^4x^9y^8)


=(3^3)/(2^2x^9y^8)

Refining


=(27)/(4x^9y^8)

Therefore,


(4\left(3xy^4\right)^3)/(\left(2x^3y^5\right)^4)=(27)/(4x^9y^8)

User Mikevoermans
by
3.8k points