67.5k views
5 votes
PLEASE HELPP‼️‼️ write in factored form g(x)= x^3 - 4x^2 - x + 22

User Mr Rubix
by
7.5k points

1 Answer

6 votes

Answer:


g\left(x\right)=x^3\:-\:4x^2\:-\:x\:+\:22 in the factored form will be:


  • g\left(x\right)=x^3-4x^2-x+22=\:\left(x+2\right)\left(x^2-6x+11\right)

Explanation:

Given the function


g\left(x\right)=x^3\:-\:4x^2\:-\:x\:+\:22

Use the rational root theorem.


a_0=22,\:\quad a_n=1


\mathrm{The\:dividers\:of\:}a_0:\quad 1,\:2,\:11,\:22,\:\quad \mathrm{The\:dividers\:of\:}a_n:\quad 1


\mathrm{Therefore,\:check\:the\:following\:rational\:numbers:\quad }\pm (1,\:2,\:11,\:22)/(1)


-(2)/(1)\mathrm{\:is\:a\:root\:of\:the\:expression,\:so\:factor\:out\:}x+2


=\left(x+2\right)(x^3-4x^2-x+22)/(x+2)

as


(x^3-4x^2-x+22)/(x+2)=x^2-6x+11
x^3-4x^2-x+22=\left(x+2\right)\left(x^2-6x+11\right)

so the expression becomes


x^3\:-\:4x^2\:-\:x\:+\:22=\left(x+2\right)\left(x^2-6x+11\right)

Therefore,


g\left(x\right)=x^3\:-\:4x^2\:-\:x\:+\:22 in the factored form will be:


  • g\left(x\right)=x^3-4x^2-x+22=\:\left(x+2\right)\left(x^2-6x+11\right)

User Hubidubi
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories