227k views
3 votes
Complete the table of values for this absolute value function. Then use the drawing tool(s) to graph the function. F(x)-2|x+1|-1

Complete the table of values for this absolute value function. Then use the drawing-example-1
User Stoive
by
5.7k points

1 Answer

6 votes

Answer:

Please check the explanation!

Explanation:

Given the equation


f\left(x\right)=-2|x+1|-1

As some of the absolute rules are:


  • \left|a\right|=a,\:a\ge 0

  • \:|-a|=a,\:\quad \:a>0

NOW, let us solve!

Let us substitute all the table values

Putting x = -4


y=-2\left|-4+1\right|-1
\mathrm{Apply\:absolute\:rule}:\quad \left|a\right|=a,\:a\ge 0


y=-6-1


y=-7

So, when x = -4, then y = -7

Putting x = -3


y=-2|-3+1|-1\:


y=-4-1


y=-5

when x = -3, then y = -5

Putting x = -2


y=-2\left|-2+1\right|-1


y=-2-1


y=-3

when x = -2, then y = -3

Putting x = -1


y=-2\left|-1+1\right|-1


y=-0-1


y=-1

when x = -1, then y = -1

Putting x = 0


y=-2\left|0+1\right|-1


y=-2-1


y=-3

when x = 0, then y = -3

Putting x = 1


y=-2\left|1+1\right|-1


y=-4-1


y=-5

when x = 1, then y = -5

The graph is also attached below.

Complete the table of values for this absolute value function. Then use the drawing-example-1
User SubOptimal
by
4.4k points