Answer:
1000 dollars
Explanation:
Given
P: ---2 -----,4 ----,6
C: 1200, 1400, 1600
Required
Calculate the fixed cost
First, we need to determine the equation that determines the relationship between P and C
We start by selecting any two corresponding values of P and C
We have that:
![(P_1,C_1) = (2,1200)](https://img.qammunity.org/2021/formulas/mathematics/college/ilhsilckzhbyl38mixrdytnskgyrwb1tx9.png)
![(P_2,C_2) = (6,1600)](https://img.qammunity.org/2021/formulas/mathematics/college/98moadwex2dqa7xaioxgq6kz1klezkqkub.png)
Calculate the slope, using:
![m = (C_2 - C_1)/(P_2 - P_1)](https://img.qammunity.org/2021/formulas/mathematics/college/8jfpauauo6zzhf2dfdoyy1kanpm0vaoqky.png)
![m = (1600 - 1200)/(6 - 2)](https://img.qammunity.org/2021/formulas/mathematics/college/9l5k89ovsrp9cbcuxfh89ttsxabnzoczy3.png)
![m = (400)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/aix8r3urna940wxlkuqtqrinl78s2edt0c.png)
![m = 100](https://img.qammunity.org/2021/formulas/mathematics/high-school/pdzm60t1jr5ltp5an8xaquhj8np7y58u0j.png)
The equation is then calculated using:
![C - C_2 = m(P - P_2)](https://img.qammunity.org/2021/formulas/mathematics/college/buwq0bidfrlxt9thuxm4pr8egyg0gmm7qt.png)
Where
and
![(P_2,C_2) = (6,1600)](https://img.qammunity.org/2021/formulas/mathematics/college/98moadwex2dqa7xaioxgq6kz1klezkqkub.png)
![C - 1600 = 100(P - 6)](https://img.qammunity.org/2021/formulas/mathematics/college/rngnys8b0451iiabi99zksii7c5q5c63hw.png)
![C - 1600 = 100P - 600](https://img.qammunity.org/2021/formulas/mathematics/college/gccr92jkem0fri0p4fx7d78galvg8owgqh.png)
Collect Like Terms
![C = 100P - 600 +1600](https://img.qammunity.org/2021/formulas/mathematics/college/txa7n3a1suzxd5yb0ty3udis58a3ecd5j2.png)
![C = 100P + 1000](https://img.qammunity.org/2021/formulas/mathematics/college/3rrrp98m737qxj3jdx4ai16aq9wiziuilw.png)
From the equation above,
100P represents the amount paid for P phones produced
1000 represents the fixed cost paid
C represents the total amount paid