Answer:
![f(x)=4x^3+44x^2+136x+96](https://img.qammunity.org/2021/formulas/mathematics/college/jh3bf0rn87zd7hr5bh2uzrcmwv88niljlz.png)
Explanation:
Polynomials
It's possible to build a polynomial function by knowing its zeros and leading coefficient.
Given the zeros of a third-degree polynomial: x=x1, x=x2, and x=x3, the function is:
![f(x)=a(x-x_1)(x-x_2)(x-x_3)](https://img.qammunity.org/2021/formulas/mathematics/college/4u2t6zi80q8t5yledct9i15l8mwxpgsslz.png)
Where a is the leading coefficient.
We are given the zeros -6, -4, and -1, thus:
![f(x)=a(x+6)(x+4)(x+1)](https://img.qammunity.org/2021/formulas/mathematics/college/ybo8pwqeca226m1kwoqnaht1y8w1duyht8.png)
The value of a can be calculated by substituting the point (-2,-32):
![a(-2+6)(-2+4)(-2+1)=-32](https://img.qammunity.org/2021/formulas/mathematics/college/3h83b53mtf1pl3yzbcbpsn7brmnsj7ubpt.png)
Calculating:
![a(4)(2)(-1)=-32](https://img.qammunity.org/2021/formulas/mathematics/college/1r593jui6yljdj4tnq0i2817t5g743f4ib.png)
![-8a=-32](https://img.qammunity.org/2021/formulas/mathematics/college/qq7qn5jfbua0jn50n5bwex21ok0er5hb2a.png)
Dividing by -8:
![a = -32/(-8) =4](https://img.qammunity.org/2021/formulas/mathematics/college/gxrh21vyhlob50rpvctjghypsqrlan569w.png)
a = 4.
The polynomial is now complete:
![f(x)=4(x+6)(x+4)(x+1)](https://img.qammunity.org/2021/formulas/mathematics/college/u5ib81hg49czn5wk7240x2q222ofk0zfn4.png)
Operating:
![f(x)=4(x^2+10x+24)(x+1)](https://img.qammunity.org/2021/formulas/mathematics/college/rq4ajczn3xqunmhu2v35zrvzt277baxrkd.png)
![f(x)=4(x^3+11x^2+34x+24)](https://img.qammunity.org/2021/formulas/mathematics/college/66i83qywt1qiut0klp1wzrd65480kul7u8.png)
![\mathbf{f(x)=4x^3+44x^2+136x+96}](https://img.qammunity.org/2021/formulas/mathematics/college/1iqj5wxeubf5ofmo2ysmhoxuo8jkite5hc.png)