Answer:
The probability is
![P(\= X > 12 ) = 0.72688](https://img.qammunity.org/2021/formulas/mathematics/college/wuf3burvy4p1yn55kucm7y3e8ghzio2non.png)
Explanation:
From the question we are told that
The mean is
![\mu = 12.3 \ years](https://img.qammunity.org/2021/formulas/mathematics/college/et60jvgm16yhuhddjuob613hc2xkc3zxj1.png)
The standard deviation is
![\sigma = 0.7 \ years](https://img.qammunity.org/2021/formulas/mathematics/college/m0boupxk2ttuq6wci6uhq5ctgiss31sb74.png)
The sample size is n = 14
Generally the standard error of the mean is mathematically represented as
![\sigma _(x) = (\sigma)/(√(n) )](https://img.qammunity.org/2021/formulas/mathematics/college/hr6d71kabtw846pflvpik3uzwh3i2e5uwz.png)
=>
![\sigma _(x) = (0.7)/(√(14) )](https://img.qammunity.org/2021/formulas/mathematics/college/pbg7c4nvz42qubcqa4wlelbx67hpg1ahcp.png)
=>
![\sigma _(x) = 0.1871](https://img.qammunity.org/2021/formulas/mathematics/college/pfuq4yfb5spnkejznnnjtfkrb5evs0o6ox.png)
Generally the probability that their mean life will be longer than 12 years is mathematically represented as
![P(\= X > 12 ) = P((\= X - \mu )/(\sigma) > (12 - 12.3)/( 0.1871 ) )](https://img.qammunity.org/2021/formulas/mathematics/college/l66wzw5p1qhdnd2p1cq1dol6d39py4k2fw.png)
![(\= X -\mu)/(\sigma ) = Z (The \ standardized \ value\ of \ \= X )](https://img.qammunity.org/2021/formulas/mathematics/college/q2j03x5d4ejlv2pda8o277n84i75ototbm.png)
![P(\= X > 12 ) = P(Z > -0.6034 )](https://img.qammunity.org/2021/formulas/mathematics/college/nxxkaxpm5cx9gn8nhacweeo91t81bvskmc.png)
From the z table the area under the normal curve to the left corresponding to -0.6034 is
=>
![P(Z > -0.6034 ) = 0.72688](https://img.qammunity.org/2021/formulas/mathematics/college/34z9zdpv521cfu8rnhgfts5zmzpd5tdxwn.png)
=>
![P(\= X > 12 ) = 0.72688](https://img.qammunity.org/2021/formulas/mathematics/college/wuf3burvy4p1yn55kucm7y3e8ghzio2non.png)