Answer:
The value is
![P( | \^p - p | < 0.04) = 0.9408](https://img.qammunity.org/2021/formulas/mathematics/college/x1432aqn13zsdju2cuwn5egxkf2kn4bw3d.png)
Explanation:
From the question we are told that
The population proportion is
![p = 0.19](https://img.qammunity.org/2021/formulas/mathematics/college/ourmkzan0efc7ybkd51j7gcaxqal8zjdft.png)
The sample size is n = 343
Generally given that the ample size is large enough , i.e n > 30 then the mean of this sampling distribution is mathematically represent
![\mu_(x) = p = 0.19](https://img.qammunity.org/2021/formulas/mathematics/college/p51ghy9bhyx25uu23tjagggw0teemc66yu.png)
Generally the standard deviation is mathematically represented as
![\sigma =\sqrt{(p(1- p))/(n) }](https://img.qammunity.org/2021/formulas/mathematics/college/p7kxrzaq0xcn8lh04xz6ad7vn1q90idamm.png)
=>
=>
![\sigma = 0.0212](https://img.qammunity.org/2021/formulas/mathematics/college/evsy5tarl6u20hr0nigic6jen61my42tee.png)
Generally the the probability that the sample proportion will differ from the population proportion by less than 4% is mathematically represented as
![P( | \^p - p | < 0.04) = P( (|\^ p - p |)/( \sigma_p ) < (0.04)/(0.0212 ) )](https://img.qammunity.org/2021/formulas/mathematics/college/tvs9vevdpo05e8n4227fq70qitjooitbaw.png)
![(|\^ p - p |)/(\sigma ) = |Z| (The \ standardized \ value\ of \ |\^ p - p | )](https://img.qammunity.org/2021/formulas/mathematics/college/abq6npr6915ssq30we4wuzubn4vgois7nu.png)
![P( | \^p - p | < 0.04) = P( |Z| < 1.887 )](https://img.qammunity.org/2021/formulas/mathematics/college/6fb7qr2caav45142q6didvhehryvfrlglb.png)
=>
![P( | \^p - p | < 0.04) = P( Z < 1.887 )- P( Z < -1.887 )](https://img.qammunity.org/2021/formulas/mathematics/college/ug68tnr6mw8475x3ahcpl2zqogkomjnnpq.png)
From the z table the area under the normal curve to the left corresponding to 1.887 and - 1.887 is
![P( Z < 1.887 )= 0.97042](https://img.qammunity.org/2021/formulas/mathematics/college/iqzq43vxn0093mloyiqsiywb3w1f2zvt61.png)
and
![P( Z < -1.887 )= 0.02958](https://img.qammunity.org/2021/formulas/mathematics/college/5sjxe3a8atpfse9exov6pm5eu7nhv4c59a.png)
So
![P( | \^p - p | < 0.04) = 0.97042 - 0.02958](https://img.qammunity.org/2021/formulas/mathematics/college/wu109mw5jsul61i5f05nd2xqg6oh8mh3p3.png)
=>
![P( | \^p - p | < 0.04) = 0.9408](https://img.qammunity.org/2021/formulas/mathematics/college/x1432aqn13zsdju2cuwn5egxkf2kn4bw3d.png)