Answer:
Explanation:
A cheese is said to be classified as either raw-milk or pasteurized.
Given that: 82% is pasteurized,
Then:
Supposed two cheeses are chosen at random;
P(both cheeses are pasteurized) = 0.82 × 0.82
= 0.6724
If four cheeses are chosen at random;
P(that all four cheeses are pasteurized) = 0.82 × 0.82 × 0.82 × 0.82
P(that all four cheeses are pasteurized) = 0.452
The required probability for at least one of the four randomly selected cheeses is raw milk is:
P(at least one of the randomly selected cheese is raw milk) = 1 - P(that all four cheeses are pasteurized)
P(at least one of the randomly selected cheese is raw milk) = 1 - 0.452
P(at least one of the randomly selected cheese is raw milk) = 0.548
However, since the probability that at least one of the randomly selected cheese is raw milk is greater than one; then we can conclude that;
It is not unusual that at least one of four randomly selected cheeses is raw-milk.