17.2k views
3 votes
Consider the multivariable function f\left(x,y,z\right)=\frac{x^3-2.5y^2+\frac{z}{2}}{z\left(x-y\right)}f ( x , y , z ) = x 3 − 2.5 y 2 + z 2 z ( x − y ). Evaluate f\left(2,3,1\right)f ( 2 , 3 , 1 ). Round your answer to two decimal places.

1 Answer

1 vote

Answer:


f\left(2,3,1\right)=\bold{14}

Explanation:

Given the function:


f\left(x,y,z\right)=(x^3-2.5y^2+(z)/(2))/(z\left(x-y\right))

To find:

The value of
f(2, 3, 1) = ?

Solution:


f(2, 3, 1) means the values of
x, y\ and\ z as:


x=2\\y=3\\z=1

Let us put the given values in the given function and let us solve for it:


\Rightarrow f\left(2,3,1\right)=(2^3-2.5* 3^2+(1)/(2))/(1\left(2-3\right))\\\\\Rightarrow f\left(2,3,1\right)=(8-2.5* 9+0.5)/(1\left(-1\right))\\\\\Rightarrow f\left(2,3,1\right)=(8-22.5+0.5)/(-1)\\\\\Rightarrow f\left(2,3,1\right)=(-14)/(-1)\\\\\Rightarrow f\left(2,3,1\right)=\bold{14}

Therefore, the answer is:


f\left(2,3,1\right)=\bold{14}

User RealMan
by
5.1k points