Answer:
C.
![(f(b)-f(1))/(b-1)=20](https://img.qammunity.org/2021/formulas/mathematics/high-school/c6vs5ptkok1lgnezcw0mpp9kf9980ye27w.png)
General Formulas and Concepts:
Calculus
- Mean Value Theorem (MVT) - If f is continuous on interval [a, b], then there is a c∈[a, b] such that
![f'(c)=(f(b)-f(a))/(b-a)](https://img.qammunity.org/2021/formulas/mathematics/high-school/vfhn3leydr76dfqjcnuao1h5orezvq5yjq.png)
- MVT is also Average Value
Explanation:
Step 1: Define
![f(x)=e^(2x)](https://img.qammunity.org/2021/formulas/mathematics/college/8o0an868tarphckma9jnk3df058z6nnz8h.png)
f'(c) = 20
Interval [1, b]
Step 2: Check/Identify
Function [1, b] is continuous.
Derivative [1, b] is continuous.
∴ There exists a c∈[1, b] such that
![f'(c)=(f(b)-f(a))/(b-a)](https://img.qammunity.org/2021/formulas/mathematics/high-school/vfhn3leydr76dfqjcnuao1h5orezvq5yjq.png)
Step 3: Mean Value Theorem
- Substitute:
![20=( f(b)-f(1))/(b-1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/uq4jggq81vw5b3svo3tvj9examdzcy3sng.png)
- Rewrite:
![( f(b)-f(1))/(b-1)=20](https://img.qammunity.org/2021/formulas/mathematics/high-school/nftjw9cpsy7est0b25lzjnlqyh6msqri3k.png)
And we have our final answer!