530,987 views
22 votes
22 votes
Cos (pi/5) + cos (2pi/5)+ Cos (3pi/5)
+ Cos (4pi/5)

User Ricco D
by
2.6k points

2 Answers

12 votes
12 votes

Answer:

0

Keys:

When going over functions like this, we must use these cosine rules:


  • \cos \left(s\right)+\cos \left(t\right)=2\cos \left((s+t)/(2)\right)\cos \left((s-t)/(2)\right)

  • \cos \left(-x\right)=\cos \left(x\right)

  • \cos \left((\pi )/(2)\right)=0

Explanation:


=\cos \left((\pi )/(5)\right)+2\cos \left((2\cdot (\pi )/(5)+3\cdot (\pi )/(5))/(2)\right)\cos \left((2\cdot (\pi )/(5)-3\cdot (\pi )/(5))/(2)\right)+\cos \left(4\cdot (\pi )/(5)\right)\\=\cos \left((\pi )/(5)\right)+2\cos \left((\pi )/(2)\right)\cos \left(-(\pi )/(10)\right)+\cos \left((4\pi )/(5)\right)\\=\cos \left((\pi )/(5)\right)+2\cos \left((\pi )/(2)\right)\cos \left((\pi )/(10)\right)+\cos \left((4\pi )/(5)\right)


cos\left((\pi )/(5)\right) = (√(5) + 1)/(4)\\=(√(5)+1)/(4)+2\cdot \:0\cdot \frac{√(2)\sqrt{5+√(5)}}{4}-(1+√(5))/(4)\\=0

User Ryan Gill
by
3.3k points
14 votes
14 votes
0

by using the cosine rule you can find this
User Joel Martinez
by
3.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.