154k views
5 votes
Find the equivalent function of sin(180+x)

User Egonzal
by
7.6k points

1 Answer

5 votes

Answer:

The equivalent function of
sin\left(180^(\circ )+x\right) will be:
-\sin \left(x\right)

i.e.


\sin \left(180^(\circ \:)+x\right)=-\sin \left(x\right)

Explanation:

Considering the function


sin\left(180^(\circ )+x\right)

Solving


sin\left(180^(\circ )+x\right)

Using the angle sum identity:


\sin \left(s+t\right)=\sin \left(s\right)\cos \left(t\right)+\cos \left(s\right)\sin \left(t\right)


=\sin \left(180^(\circ \:)\right)\cos \left(x\right)+\cos \left(180^(\circ \:)\right)\sin \left(x\right)

as


\cos \left(180^(\circ \:)\right)=\left(-1\right)


\sin \left(180^(\circ \:)\right)=0

so


=0\cdot \:\cos \:\left(x\right)+\left(-1\right)\cdot \:\sin \:\left(x\right)


=0\cdot \cos \left(x\right)-1\cdot \sin \left(x\right)


=0-1\cdot \sin \left(x\right)


=0-\sin \left(x\right)


=-\sin \left(x\right)

So, the equivalent function of
sin\left(180^(\circ )+x\right) will be:
-\sin \left(x\right)

Therefore:


\sin \left(180^(\circ \:)+x\right)=-\sin \left(x\right)

User Kingwei
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories