154k views
5 votes
Find the equivalent function of sin(180+x)

User Egonzal
by
7.2k points

1 Answer

5 votes

Answer:

The equivalent function of
sin\left(180^(\circ )+x\right) will be:
-\sin \left(x\right)

i.e.


\sin \left(180^(\circ \:)+x\right)=-\sin \left(x\right)

Explanation:

Considering the function


sin\left(180^(\circ )+x\right)

Solving


sin\left(180^(\circ )+x\right)

Using the angle sum identity:


\sin \left(s+t\right)=\sin \left(s\right)\cos \left(t\right)+\cos \left(s\right)\sin \left(t\right)


=\sin \left(180^(\circ \:)\right)\cos \left(x\right)+\cos \left(180^(\circ \:)\right)\sin \left(x\right)

as


\cos \left(180^(\circ \:)\right)=\left(-1\right)


\sin \left(180^(\circ \:)\right)=0

so


=0\cdot \:\cos \:\left(x\right)+\left(-1\right)\cdot \:\sin \:\left(x\right)


=0\cdot \cos \left(x\right)-1\cdot \sin \left(x\right)


=0-1\cdot \sin \left(x\right)


=0-\sin \left(x\right)


=-\sin \left(x\right)

So, the equivalent function of
sin\left(180^(\circ )+x\right) will be:
-\sin \left(x\right)

Therefore:


\sin \left(180^(\circ \:)+x\right)=-\sin \left(x\right)

User Kingwei
by
7.7k points