171k views
5 votes
Given that
f(n) = n^2 - 4n + 3
& g(n) = 2n - 1
find gf(-2)

1 Answer

5 votes

Answer:

The value of
gf\left(-2\right) will be:


  • gf\left(-2\right)=29

Explanation:

Given the functions


f(n) = n^2 - 4n + 3


g\left(n\right)\:=\:2n\:-\:1


f\left(-2\right)\:=\:\left(-2\right)^2\:-\:4\left(-2\right)\:+\:3


=\left(-2\right)^2+4\cdot \:2+3


=2^2+4\cdot \:2+3


=2^2+8+3


=4+11


=15

so


gf\left(-2\right)=g\left(15\right)


=2n-1=2\left(15\right)-1=30-1=29

Therefore,


  • gf\left(-2\right)=29

User Emna Ayadi
by
5.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.