171k views
5 votes
Given that
f(n) = n^2 - 4n + 3
& g(n) = 2n - 1
find gf(-2)

1 Answer

5 votes

Answer:

The value of
gf\left(-2\right) will be:


  • gf\left(-2\right)=29

Explanation:

Given the functions


f(n) = n^2 - 4n + 3


g\left(n\right)\:=\:2n\:-\:1


f\left(-2\right)\:=\:\left(-2\right)^2\:-\:4\left(-2\right)\:+\:3


=\left(-2\right)^2+4\cdot \:2+3


=2^2+4\cdot \:2+3


=2^2+8+3


=4+11


=15

so


gf\left(-2\right)=g\left(15\right)


=2n-1=2\left(15\right)-1=30-1=29

Therefore,


  • gf\left(-2\right)=29

User Emna Ayadi
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories