194k views
14 votes
Cos (pi/5) + cos (2pi/5)+ Cos (3pi/5)
+ Cos (4pi/5)

2 Answers

9 votes

Answer:

0

Keys:

When going over functions like this, we must use these cosine rules:


  • \cos \left(s\right)+\cos \left(t\right)=2\cos \left((s+t)/(2)\right)\cos \left((s-t)/(2)\right)

  • \cos \left(-x\right)=\cos \left(x\right)

  • \cos \left((\pi )/(2)\right)=0

Explanation:


=\cos \left((\pi )/(5)\right)+2\cos \left((2\cdot (\pi )/(5)+3\cdot (\pi )/(5))/(2)\right)\cos \left((2\cdot (\pi )/(5)-3\cdot (\pi )/(5))/(2)\right)+\cos \left(4\cdot (\pi )/(5)\right)\\=\cos \left((\pi )/(5)\right)+2\cos \left((\pi )/(2)\right)\cos \left(-(\pi )/(10)\right)+\cos \left((4\pi )/(5)\right)\\=\cos \left((\pi )/(5)\right)+2\cos \left((\pi )/(2)\right)\cos \left((\pi )/(10)\right)+\cos \left((4\pi )/(5)\right)


cos\left((\pi )/(5)\right) = (√(5) + 1)/(4)\\=(√(5)+1)/(4)+2\cdot \:0\cdot \frac{√(2)\sqrt{5+√(5)}}{4}-(1+√(5))/(4)\\=0

User Kiren S
by
7.4k points
5 votes
0

by using the cosine rule you can find this
User Chris Riebschlager
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.