Answer:
![d=√(149)\approx12.21](https://img.qammunity.org/2021/formulas/mathematics/college/mvbj0og5ue0f8hd4z1x05bmrbotn546kvd.png)
Explanation:
To find the distance between any two points, we can use the distance formula:
![d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2](https://img.qammunity.org/2021/formulas/mathematics/college/59mumd8gnglergz4obn7hgvn5ckm08ajet.png)
We have the two points (-1, 7) and (-8, -3).
Let (-1, 7) be (x₁, y₁) and let (-8, -3) be (x₂, y₂). Substitute:
![d=√((-8-(-1))^2+(-3-7)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/jfmk41frzkbq12r7euxuwjvbrsa3epl7l0.png)
Evaluate:
![d=√((-8+1)^2+(-10)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/35cs88kz360adgcxg0oaqpovsa2thxy53o.png)
Evaluate:
![d=√((-7)^2+(-10)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/s7dhw75eye7rudesmx7cwsyoaz9ux4xe2f.png)
Square:
![d=√(49+100)](https://img.qammunity.org/2021/formulas/mathematics/college/2bch5yecp4pp168wjd322334g4dic2srdq.png)
Add:
![d=√(149)\approx12.21](https://img.qammunity.org/2021/formulas/mathematics/college/mvbj0og5ue0f8hd4z1x05bmrbotn546kvd.png)
This cannot be simplified. Hence, the distance between (-1, 7) and (-8, -3) is √(149) or approximately 12.21 units.