Answer:
Explanation:
∠X ≅∠Z : Given
∠ZYV≅∠XYU
∠ZVY≅∠XUY Because ∠ZYV≅∠XYU, ∠X ≅∠Z.
So ∠YVW≅∠YUW
Draw VU
ΔVWU is an isosceles triange so ∠UVW≅∠VUW
So ∠YVU≅∠YUV
Therefore ΔYVU is also an isosceles triangle and YV = YU
So ΔZYV≅ΔXYU ( ASA)
So XU = ZV ( because of CPCTC)
Therefore XU + WU = ZV = VW : XW = ZV
ΔXWV ≅ΔZWU ( ASA)