We are integrating f(x) = 9cos(9x) + 3x²:
![\int\ {9cos(9x)+3x^(2) } \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/23mia7cf5hukqb9qpoq9dw82p354nyhtwq.png)
a) Apply the sum rule
![\int\9cos(9x)} \, dx +\int\ 3x^(2) } \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/d56e05ple7xvnlduvddup6dzvn5k1h1fjb.png)
b) Calculate each antiderivative
First integral
![\int\ {9cos(9x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/mgdootgqo4wt1l3wkmevngff738953f5xo.png)
1. Take out the constant
![9\int\ {cos(9x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/yxar54fh95s8igyuwh20losvbzduqaeag5.png)
2. Apply u-substitution, where u is 9x
![9\int\ {cos(u)(1)/(9) } du](https://img.qammunity.org/2021/formulas/mathematics/college/pvcc02i1b9tbs1vqyyyrp20gd5g5mo0z70.png)
3. Take out the constant (again)
![9*(1)/(9) \int{cos(u)} du](https://img.qammunity.org/2021/formulas/mathematics/college/un296zpiweip3puuy6d2h08nvme6xhpyac.png)
4. Take the common integral of cos, which is sin
![9*(1)/(9)sin(u)}](https://img.qammunity.org/2021/formulas/mathematics/college/944ci210rjawz1tkvyzzdcodq135fl2w77.png)
5. Substitute the original function back in for u and simplify
![9*(1)/(9) sin(9x) = sin(9x)](https://img.qammunity.org/2021/formulas/mathematics/college/yap9n3d4f8oanq4af1uftptpeocpcyqjwz.png)
6. Always remember to add an arbitrary constant, C, at the end
![sin(9x) + C](https://img.qammunity.org/2021/formulas/mathematics/college/pmsnf1iv8bdmj4ym2emh2jnefha9jrmeh6.png)
Second integral
![\int3x^(2) } \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/ki6xklrepbg1c4u1q02yowmysnywffbwms.png)
1. Take out the constant
![3\int{x^(2) } \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/zgqegq8zs3xfka39kbf7swk91k8v2ar7nb.png)
2. Apply the power rule,
, where a is your exponent
⇒
![3*(x^(2+1) )/(2+1) = x^(3)](https://img.qammunity.org/2021/formulas/mathematics/college/qh8w1mzof71nlp6za42oth3lnvhnypftd1.png)
3. Add the arbitrary constant
![x^(3) + C](https://img.qammunity.org/2021/formulas/mathematics/college/x0aw28g66opmdg7qbc6itwf9hfymzecyfw.png)
c) Add the integrals
sin(9x) + C + x³ + C = sin(9x) + x³ + C
Notice the two arbitrary constants. Since we do not know what either constant is, we can combine them into one arbitrary constant.
Answer:
F(x) = sin(9x) + x³ + C