Answer:
a) 4.17*10^-4 nm
b) 0.044 nm
c) 4.35*10^-17 joules
d) 271.875 eV
Step-by-step explanation:
Given that
angle of scatter = θ = 34°
To find the change in wavelength of the photon, we use the relation
Δλ = λ(f) - λ(i) = [h/me*c] (1 - cos θ)
Δλ = [6.67*10^-34/9.1*10^-31*3*10^8] (1 - cos 34)
Δλ = 2.44*10^-12 * 0.171
Δλ = 4.17*10^-13 m = 4.17*10^-4 nm
B
To find the wavelength of scattered light, we have
Δλ = λ(f) - λ(i) = 4 17*10^-4 nm
λ(f) = λ(i) + 4.17*10^-4 nm, now we substitute the value if λ(i), to get
λ(f) = 4.36*10^-2 nm + 4.17*10^-4 nm
λ(f) = 0.044 nm
C
To find the change in energy, we use our wavelengths in m, instead of nm. The formula is thus
hc/λ(i) - hc/λ(f) = hc[λ(f) - λ(i)]/λ(f) *λ(i)
ΔE = 20.01*10^-26 [4.17*10^-13] / (0.044*10^-9 * 0.0436*10^-9)
ΔE = 8,344*10^-38 ÷ 1.918*10^-21
ΔE = 4.35*10^-17 joules
D
On converting to eV, we have
ΔE = 4.35*10^-17 /1.6*10^-19
ΔE = 271.875 eV (elevtron volt)