9.9k views
14 votes
Evaluate:


\bf{\sum^(10)_(n-1)\:8(\cfrac{1}{4})^(n-1)


\bf{\overline{\underline{\overline{\underline{Please\:show\;work!}}}}

User Macaroni
by
4.3k points

1 Answer

1 vote

Let S be the given sum, so


S = 8 + 8 \left(\frac14\right) + 8 \left(\frac14\right)^2 + \cdots + 8 \left(\frac14\right)^9


\displaystyle S = 8 \left(1 + \frac14 + \frac1{4^2} + \cdots + \frac1{4^9}\right)

Multiply both sides by 1/4.


\displaystyle \frac S4 = 8 \left(\frac14 + \frac1{4^2} + \frac1{4^3} + \cdots + \frac1{4^(10)}\right)

Subtract this from S to eliminate all the but the first term in S and the last term in S/4 :


\displaystyle S - \frac S4 = 8 \left(1 - \frac1{4^(10)}\right)

Solve for S :


\displaystyle \frac{3S}4 = 8 \left(1 - \frac1{4^(10)}\right)


\displaystyle S = \frac{32}3 \left(1 - \frac1{4^(10)}\right) = \boxed{(349,525)/(32,768)}

User Amlyhamm
by
4.8k points