Answer:
14.
![y = -2x -1](https://img.qammunity.org/2021/formulas/mathematics/high-school/ybagze374zav2yx1p2h75whm320w3t5vjl.png)
15.
![y = -(3)/(4)x +3](https://img.qammunity.org/2021/formulas/mathematics/high-school/g32wiph2xp4lv0zlx6ljprsjv95u9h63r5.png)
16.
![y= 4x + 9](https://img.qammunity.org/2021/formulas/mathematics/high-school/xo86x947z5jii7ehji9h6ub79tz9xvas2h.png)
17.
![y = -(5)/(3)x -2](https://img.qammunity.org/2021/formulas/mathematics/high-school/gx5sk37nwkhmawanj9ophxnmbnmz819og1.png)
18.
![y= -(2)/(3)x -5](https://img.qammunity.org/2021/formulas/mathematics/high-school/zctf5eb4ui5zsc2w95vvj0j6u8wex0bqsv.png)
19.
![y = 4x -3](https://img.qammunity.org/2021/formulas/mathematics/high-school/vgamksbckvgl2swgki7sd5y6t93q2wykhl.png)
20.
![y = -3x -7](https://img.qammunity.org/2021/formulas/mathematics/high-school/8osaeefj8yqq2dfosdwx39mj36ht94yge1.png)
Explanation:
Solving (14):
Given
![(x_1,y_1) = (-7,13)](https://img.qammunity.org/2021/formulas/mathematics/high-school/i6asnkij6yavtco9lv2s41x0f8ocavc4ow.png)
![Slope (m) = -2](https://img.qammunity.org/2021/formulas/mathematics/high-school/1gcab5b7ibsp4nc7jw455aj9ik6vllm1f6.png)
Equation in
form is:
![y - y_1 = m(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1fcsfmeqh2na5383o0qvmvdfuz6kjpvq1k.png)
Substitute values for y1, m and x1
![y - 13 = -2(x -(-7))](https://img.qammunity.org/2021/formulas/mathematics/high-school/4p2lnmqgjb53mv44ts9jnuya3omnb38om2.png)
![y - 13 = -2(x +7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gpikhp4sh2qpnxz0srnn9p36mtjm842obd.png)
![y - 13 = -2x -14](https://img.qammunity.org/2021/formulas/mathematics/high-school/v4g8x93i2smn1345x9smbpnaojcxo24wpp.png)
Collect Like Terms
![y = -2x -14 + 13](https://img.qammunity.org/2021/formulas/mathematics/high-school/1o0l5kbrmyu53vxv93gi2tu39yp2jxhxj2.png)
![y = -2x -1](https://img.qammunity.org/2021/formulas/mathematics/high-school/ybagze374zav2yx1p2h75whm320w3t5vjl.png)
Solving (15):
Given
![(x_1,y_1) = (-4,6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hxhhh7htp1bdg9zic78f5hbltkdp83e94h.png)
![Slope (m) = -(3)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/j23fqjghuqkfpusm00tfq7h5rh7ut4s813.png)
Equation in
form is:
![y - y_1 = m(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1fcsfmeqh2na5383o0qvmvdfuz6kjpvq1k.png)
Substitute values for y1, m and x1
![y - 6 = -(3)/(4)(x - (-4))](https://img.qammunity.org/2021/formulas/mathematics/high-school/fw4pgbfcw4x3cl7v21z2acgxxrw5yedxi1.png)
![y - 6 = -(3)/(4)(x +4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gwdr9oqc2nwvkpkqop1xo4bmuoe2wnr3gh.png)
![y - 6 = -(3)/(4)x -3](https://img.qammunity.org/2021/formulas/mathematics/high-school/t3c9idt3c02gdts5fzyvt1ti8te4f0ajmx.png)
Collect Like Terms
![y = -(3)/(4)x -3 + 6](https://img.qammunity.org/2021/formulas/mathematics/high-school/vqhdlwyqs4kvmr42foaa2b3aqo23vbj8gx.png)
![y = -(3)/(4)x +3](https://img.qammunity.org/2021/formulas/mathematics/high-school/g32wiph2xp4lv0zlx6ljprsjv95u9h63r5.png)
Solving (16):
Given
![(x_1,y_1) = (-5,-11)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7l1pi32tvfapfdm5h1h45ah7zc1tw2nnf5.png)
![(x_2,y_2) = (-2,1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/lv459cyisyvalmd0szc3n48jyi37502akt.png)
First, we need to calculate the
![slope\ (m)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9cfvq89wg0th97s351n2mvw54j2w7etpxj.png)
![m = (y_2 - y_1)/(x_2 - x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gjvq8ugonz7wbfcjxpwzkf808xsbjwfyvh.png)
![m = (1 - (-11))/(-2 - (-5))](https://img.qammunity.org/2021/formulas/mathematics/high-school/rvqtlol2mhd46kaexg5omil41rr5jep066.png)
![m = (1 +11)/(-2 +5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/asr0d5nudwvbh77jgz73g0ur9hbs2hsfwz.png)
![m = (12)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/69wq9ut0szee0zt9efcg3w1od12qsxamhq.png)
![m = 4](https://img.qammunity.org/2021/formulas/mathematics/high-school/y9cor1sovfwi0gulrfjc1k7h5t3jtx0f7v.png)
Equation in
form is:
![y - y_1 = m(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1fcsfmeqh2na5383o0qvmvdfuz6kjpvq1k.png)
Substitute values for y1, m and x1
![y - (-11) = 4(x -(-5))](https://img.qammunity.org/2021/formulas/mathematics/high-school/hldspajsgx1wquj7ow836pbkbuokbxl47g.png)
![y +11 = 4(x+5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/uml5di494ntxt9ypmxgf42ghuj4bgs13jk.png)
![y +11 = 4x+20](https://img.qammunity.org/2021/formulas/mathematics/high-school/t14lrk9ovce0o4gy1826j6b5c4659nw2va.png)
Collect Like Terms
![y= 4x + 20 - 11](https://img.qammunity.org/2021/formulas/mathematics/high-school/o3vwvdgvqh094ydrvnyl0xh8ou2wqrwh01.png)
![y= 4x + 9](https://img.qammunity.org/2021/formulas/mathematics/high-school/xo86x947z5jii7ehji9h6ub79tz9xvas2h.png)
Solving (17):
Given
![(x_1,y_1) = (-6,8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/nsc77acumv3tij9jwssinffc0omrf30ooi.png)
![(x_2,y_2) = (3,-7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/i3s891n4oqzxtcp8g4mos7s1qx8regwzzf.png)
First, we need to calculate the
![slope\ (m)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9cfvq89wg0th97s351n2mvw54j2w7etpxj.png)
![m = (y_2 - y_1)/(x_2 - x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gjvq8ugonz7wbfcjxpwzkf808xsbjwfyvh.png)
![m = (-7 - 8)/(3- (-6))](https://img.qammunity.org/2021/formulas/mathematics/high-school/2p4i30oq2tpfluwch9jbnh6jdtuz9cwolk.png)
![m = (-7 - 8)/(3+6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/rgmpqrkqcjh5ybngux0ufgnduhfe4llwtx.png)
![m = (-15)/(9)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ws8w0k9mkoyo1s02r7lkkv25tmfiwjlfwz.png)
![m = -(5)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/yh8c1xgh17swm10a2d02er21a5jk1nixbt.png)
Equation in
form is:
![y - y_1 = m(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1fcsfmeqh2na5383o0qvmvdfuz6kjpvq1k.png)
Substitute values for y1, m and x1
![y - 8 = -(5)/(3)(x -(-6))](https://img.qammunity.org/2021/formulas/mathematics/high-school/vhw6610p1k6379jqhxzex5lzq1fdp5k6hc.png)
![y - 8 = -(5)/(3)(x +6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/w1ixcsrdtg1vbxhkfaph8dk8pk5jwyqx0l.png)
![y - 8 = -(5)/(3)x -10](https://img.qammunity.org/2021/formulas/mathematics/high-school/24jkp40nx8cw63ld1sx5y7t92n5abnhfm7.png)
Collect Like Terms
![y = -(5)/(3)x -10 + 8](https://img.qammunity.org/2021/formulas/mathematics/high-school/io418xqyhr9w94k3k6y1edwbw0ghyf66qu.png)
![y = -(5)/(3)x -2](https://img.qammunity.org/2021/formulas/mathematics/high-school/gx5sk37nwkhmawanj9ophxnmbnmz819og1.png)
18.
Given
![(x_1,y_1) = (-6,-1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8nvk2ty95j5m5tztesswiewirwnjgk2nlf.png)
![y = -(2)/(3)x+1](https://img.qammunity.org/2021/formulas/mathematics/high-school/jyvpnlagsptb6a3vfode0lehzlyoci4xtt.png)
Since the given point is parallel to the line equation, then the slope of the point is calculated as:
![m_1 = m_2](https://img.qammunity.org/2021/formulas/engineering/college/qdw8ac7wfs72rkhz9cus9yx4xjj8nw2lvv.png)
Where
represents the slope
Going by the format of an equation,
; by comparison
![m = -(2)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/pavc107sqj3kjb89ruco69pg3tqv3o5wv4.png)
and
![m_1 = m_2 = -(2)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/1ly3x74vyb9xge3ls3pi4dgzml2sxkygan.png)
Equation in
is:
![y - y_1 = m(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1fcsfmeqh2na5383o0qvmvdfuz6kjpvq1k.png)
Substitute values for y1, m and x1
![y - (-1) = -(2)/(3)(x - (-6))](https://img.qammunity.org/2021/formulas/mathematics/high-school/sjy67rop3inapf5tvs8zlpud87rew7ysa7.png)
![y +1 = -(2)/(3)(x +6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/30gak5038gd51axls8p0nvpptd16c1jv50.png)
![y +1 = -(2)/(3)x -4](https://img.qammunity.org/2021/formulas/mathematics/high-school/6n52xe0d2uwtxgz4edgxawg2vwyvn4q4qy.png)
![y= -(2)/(3)x -4 - 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/7qv54n63ey6hq068btks2bpmami3oj6vlw.png)
![y= -(2)/(3)x -5](https://img.qammunity.org/2021/formulas/mathematics/high-school/zctf5eb4ui5zsc2w95vvj0j6u8wex0bqsv.png)
19.
Given
![(x_1,y_1) = (-2,-11)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/detb51x3qa8jqdzw0ftwtlype1lkofb5e5.png)
![y = -(1)/(4)x+2](https://img.qammunity.org/2021/formulas/mathematics/high-school/u3haz5t2v1co1ljw72gmty76rvoe7c20d4.png)
Since the given point is parallel to the line equation, then the slope of the point is calculated as:
![m_1 = -(1)/(m_2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/fstj2ilnzerv3m1fe3qfw7gntvrfmx7yh4.png)
Where
represents the slope
Going by the format of an equation,
; by comparison
![m_2 = -(1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/s2055wh9k32o1a03h0nzyojvft0knqh42y.png)
and
![m_1 = -(1)/(m_2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/fstj2ilnzerv3m1fe3qfw7gntvrfmx7yh4.png)
![m_1 = -1/(-1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/clywjctlu8xhbhun4dcj7rcdj0ar5peqp1.png)
![m_1 = -1*(-4)/(1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/e6n95nzkaye7ldriggx7e1cjtlpxkr8wq8.png)
![m_1 = 4](https://img.qammunity.org/2021/formulas/mathematics/high-school/qp0u4fpbw5xibsk6jdzk2y9xyn7xn62hbw.png)
Equation in
is:
![y - y_1 = m(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1fcsfmeqh2na5383o0qvmvdfuz6kjpvq1k.png)
![(x_1,y_1) = (-2,-11)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/detb51x3qa8jqdzw0ftwtlype1lkofb5e5.png)
Substitute values for y1, m and x1
![y - (-11) = 4(x - (-2))](https://img.qammunity.org/2021/formulas/mathematics/high-school/ydbye71ryzl2czixt5awmiwdsyis8whe8c.png)
![y +11 = 4(x +2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/4koj20ucthvuv69nn4de961y3lbbqxhzlc.png)
![y +11 = 4x +8](https://img.qammunity.org/2021/formulas/mathematics/high-school/14q74b5wzkvyzap3j0oyravpx7773ai79p.png)
Collect Like Terms
![y = 4x + 8 - 11](https://img.qammunity.org/2021/formulas/mathematics/high-school/lyithyhy6cd5hqsatklnvihf00qzmebiuc.png)
![y = 4x -3](https://img.qammunity.org/2021/formulas/mathematics/high-school/vgamksbckvgl2swgki7sd5y6t93q2wykhl.png)
20.
Given
![(x_1,y_1) = (-10,3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/3incq7ktksmmqpvqxqyftnt1insz8l7395.png)
![(x_2,y_2) = (2,7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/p7z5guc6v2wwj9spkcwmdk7lllvvqi7o2d.png)
First, we need to calculate the slope of the given points
![m = (y_2 - y_1)/(x_2 - x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/gjvq8ugonz7wbfcjxpwzkf808xsbjwfyvh.png)
![m = (7 - 3)/(2 - (-10))](https://img.qammunity.org/2021/formulas/mathematics/high-school/ed5wo4fs2agjzklnin4xyyt03ri0jn5imh.png)
![m = (7 - 3)/(2 +10)](https://img.qammunity.org/2021/formulas/mathematics/high-school/w1iu2e75eo31njbulyjmgzpew2a8j7mvch.png)
![m = (4)/(12)](https://img.qammunity.org/2021/formulas/mathematics/high-school/lpedt4s4i7dhx01fusisjq40d29hu0iuqi.png)
![m = (1)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/vg3gthadlh3adpyiok4m3ze71o6ktazuv8.png)
Next, we determine the slope of the perpendicular bisector using:
![m_1 = -(1)/(m_2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/fstj2ilnzerv3m1fe3qfw7gntvrfmx7yh4.png)
![m_1 = -1/(1)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/z7geu2yhlbendxvj7w3iq1zs2oecllakgm.png)
![m_1 = -3](https://img.qammunity.org/2021/formulas/mathematics/high-school/l207rcvo6vgb7o01vtw3yd7d10fj2yf3jv.png)
Next, is to determine the coordinates of the bisector.
To bisect means to divide into equal parts.
So the coordinates of the bisector is the midpoint of the given points;
![Midpoint = [(1)/(2)(x_1+x_2),(1)/(2)(y_1+y_2)]](https://img.qammunity.org/2021/formulas/mathematics/high-school/kvxn4s8rsdmefd298dqc35neypoow0mm3c.png)
![Midpoint = [(1)/(2)(-10+2),(1)/(2)(3+7)]](https://img.qammunity.org/2021/formulas/mathematics/high-school/xkix3rxh7p52669oq157pmqszia23y5jrt.png)
![Midpoint = [(1)/(2)(-8),(1)/(2)(10)]](https://img.qammunity.org/2021/formulas/mathematics/high-school/bqimx6xq6zewqk15p7u3ymqdb3paa3vsjc.png)
![Midpoint = (-4,5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kfm4xkq6wij81339z9hcr86zau09ac4dlk.png)
So, the coordinates of the midpoint is:
![(x_1,y_1) = (-4,5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/db9jhffzolrscwaxs9w1bg8sw5j1vt5saw.png)
Equation in
form is:
![y - y_1 = m(x-x_1)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1fcsfmeqh2na5383o0qvmvdfuz6kjpvq1k.png)
Substitute values for y1, m and x1:
&
![(x_1,y_1) = (-4,5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/db9jhffzolrscwaxs9w1bg8sw5j1vt5saw.png)
![y - 5 = -3(x - (-4))](https://img.qammunity.org/2021/formulas/mathematics/high-school/jypswesjdu6v9tl3qk7txtlvqy0w9bwb2r.png)
![y - 5 = -3(x +4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/8c81tvhsurg6e3uji4dcc6m2ss23hpu8m4.png)
![y - 5 = -3x-12](https://img.qammunity.org/2021/formulas/mathematics/high-school/f5x5y6p7kmlnw9straihz1d7wvkk3u3bx6.png)
Collect Like Terms
![y = -3x - 12 +5](https://img.qammunity.org/2021/formulas/mathematics/high-school/q7rmcb616hiszks1bo1t5jk5e4fvrkawj6.png)
![y = -3x -7](https://img.qammunity.org/2021/formulas/mathematics/high-school/8osaeefj8yqq2dfosdwx39mj36ht94yge1.png)