134k views
20 votes
If the sine ratio is given, then how can sin 0/2 be determined?

User Noushad
by
3.7k points

1 Answer

5 votes

Explanation:

If you know, the sine. You must find the cos ratio, using the Pythagorean trig theorem.

Next, you use the half angle identity for sin


\sin( ( \alpha )/(2) ) = \sqrt{ (1 - \cos(a) )/(2) }

Example.


\sin( \alpha ) = ( √(3) )/(2)

We must find


\sin( ( \alpha )/(2) )

First, use the Pythagorean identity


\sin {}^(2) ( \alpha ) + \cos {}^(2) ( \alpha ) = 1


( ( √(3) )/(2) ) {}^(2) + \cos {}^(2) (a) = 1


(3)/(4) + \cos {}^(2) (a) = 1


\cos {}^(2) (a) = (1)/(4)


\cos( \alpha ) = (1)/(2)

Now use the half angle identiy


\sin( ( \alpha )/(2) ) = \sqrt{ (1 - \cos( \alpha ) )/(2) }


= \frac{ \sqrt{1 - (1)/(2) } }{ √(2) }


= \frac{ \sqrt{ (1)/(2) } }{ √(2) }


= \frac{ \sqrt{ (1)/(2) } }{ √(2) } * ( √(2) )/( √(2) ) = ( √(1) )/( √(4) ) = (1)/(2)

So the answer for our example is 1/2

User Gurjeet Singh
by
3.5k points