Explanation:
If you know, the sine. You must find the cos ratio, using the Pythagorean trig theorem.
Next, you use the half angle identity for sin
![\sin( ( \alpha )/(2) ) = \sqrt{ (1 - \cos(a) )/(2) }](https://img.qammunity.org/2023/formulas/mathematics/high-school/b5hw6bvttusyuunb25frhg8a0s7c3zbjr2.png)
Example.
![\sin( \alpha ) = ( √(3) )/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/i8r1b6sqffvb7rf19x8u2thxl692llnrcs.png)
We must find
![\sin( ( \alpha )/(2) )](https://img.qammunity.org/2023/formulas/mathematics/high-school/c0nzidp7eqm4q38rxqar8k5zu1cqgjbdvn.png)
First, use the Pythagorean identity
![\sin {}^(2) ( \alpha ) + \cos {}^(2) ( \alpha ) = 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/euw61486hq80oo9x0qvmu97vn8ol0m2o9x.png)
![( ( √(3) )/(2) ) {}^(2) + \cos {}^(2) (a) = 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/c2oifyx03pd4f1g2dnsoow9dtb97cmz6sm.png)
![(3)/(4) + \cos {}^(2) (a) = 1](https://img.qammunity.org/2023/formulas/mathematics/high-school/v9frqflhccohhq7psm3oexc5ul2lk4q1pi.png)
![\cos {}^(2) (a) = (1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/high-school/rmb82u4qtl6h9iote57ntjzf4i364x32fv.png)
![\cos( \alpha ) = (1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/ptp5hijgcq2a2exh7mr615c8qacpvzi6ol.png)
Now use the half angle identiy
![\sin( ( \alpha )/(2) ) = \sqrt{ (1 - \cos( \alpha ) )/(2) }](https://img.qammunity.org/2023/formulas/mathematics/high-school/untv815lkxh18co2rml5a8x9j7vxghi7vv.png)
![= \frac{ \sqrt{1 - (1)/(2) } }{ √(2) }](https://img.qammunity.org/2023/formulas/mathematics/high-school/p22znwcrgq1mmdcovu0z7f7snzy77b1d02.png)
![= \frac{ \sqrt{ (1)/(2) } }{ √(2) }](https://img.qammunity.org/2023/formulas/mathematics/high-school/y2a7cu96gki967alcs510msnywd2nrv1pj.png)
![= \frac{ \sqrt{ (1)/(2) } }{ √(2) } * ( √(2) )/( √(2) ) = ( √(1) )/( √(4) ) = (1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/in7q48vpkis1sodpjsc0ovolai7ocxpqwa.png)
So the answer for our example is 1/2