Answer:
![\displaystyle (dy)/(dx) = -40x \sin (5x^2) \cos^3 (5x^2)](https://img.qammunity.org/2021/formulas/mathematics/college/wgbtyqqel8kac6qjhgll9znigzh0pqzhoa.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/bz16ipe6p14y3f6abzxt2zy0j41tg530u9.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]:
![\displaystyle (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/ljowxevzhh8dk8mfdheam579ywk5jvteyi.png)
Explanation:
Step 1: Define
Identify
![\displaystyle y = \cos^4 (5x^2)](https://img.qammunity.org/2021/formulas/mathematics/college/zo6bfs6vyzw5lc6asj161wghq61vfi6wyz.png)
Step 2: Differentiate
- Basic Power Rule [Derivative Rule - Chain Rule]:
![\displaystyle y' = 4 \cos^3 (5x^2)[\cos (5x^2)]'](https://img.qammunity.org/2021/formulas/mathematics/college/yecufdxvvwd23r84itjr7l2lr4zvs5b8r1.png)
- Trigonometric Differentiation [Derivative Rule - Chain Rule]:
![\displaystyle y' = 4 \cos^3 (5x^2) \sin (5x^2) (5x^2)'](https://img.qammunity.org/2021/formulas/mathematics/college/b4qh5g9wf8ai3ltr2daioxlhh1wr5db5lt.png)
- Basic Power Rule [Derivative Property - Multiplied Constant]:
![\displaystyle y' = -40x \sin (5x^2) \cos^3 (5x^2)](https://img.qammunity.org/2021/formulas/mathematics/college/srljbug11d4wqoe5cv5hj6110kfowo94jf.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation