129k views
14 votes
Helppp

The functions f and g are defined as follows:

Helppp The functions f and g are defined as follows:-example-1

2 Answers

4 votes

#a


\\ \rm\Rrightarrow f(-4)


\\ \rm\Rrightarrow 3(-4)+2


\\ \rm\Rrightarrow -12+2


\\ \rm\Rrightarrow -10

#b

#1


\\ \rm\Rrightarrow y=(2x-1)/(3)

  • Interchange x,y


\\ \rm\Rrightarrow x=(2y-1)/(3)

Find y


\\ \rm\Rrightarrow y=(3x+1)/(2)

Inverse is


\\ \rm\Rrightarrow g^(-1)(x)=(3x+1)/(2)

#2


\\ \rm\Rrightarrow gof(x)


\\ \rm\Rrightarrow g(f(x))


\\ \rm\Rrightarrow g(3x+2)


\\ \rm\Rrightarrow (2(3x+2)-1)/(3)


\\ \rm\Rrightarrow (6x+4-1)/(3)


\\ \rm\Rrightarrow (6x+3)/(3)

If we factor out


\\ \rm\Rrightarrow (2x+1)/(1)


\\ \rm\Rrightarrow 2x+1

#c


\\ \rm\Rrightarrow f(x)=g(x)


\\ \rm\Rrightarrow 3x+2=(2x-1)/(3)


\\ \rm\Rrightarrow 3(3x+2)=2x-1


\\ \rm\Rrightarrow 9x+6=2x-1


\\ \rm\Rrightarrow 7x=-7


\\ \rm\Rrightarrow x=-1

User Erik Tjernlund
by
8.1k points
4 votes

Answer:

Given functions:


f(x)=3x+2


g(x)=\left((2x-1)/(3)\right)

Part (a)


\begin{aligned}\implies f(-4) & = 3(-4)+2\\& = -12+2\\ & = -10\end{aligned}

Part (b)(i)


\begin{aligned}g(x) & =\left((2x-1)/(3)\right)\\\\\textsf{Swap }g(x) \textsf{ for }y : \\\implies y & = \left((2x-1)/(3)\right)\\\\\textsf{Make } x \textsf{ the subject}: \\\implies 3y & = 2x-1\\3y+1 & = 2x\\x & = (3y+1)/(2)\\\\\textsf{Swap }x \textsf{ for }g^(-1)(x) \textsf{ and }y \textsf{ for }x:\\\implies g^(-1)(x) & = (3x+1)/(2)\end{aligned}

Part (b)(ii)


\begin{aligned}gf(x) & = (2[f(x)]-1)/(3)\\\\& = (2(3x+2)-1)/(3)\\\\& = (6x+4-1)/(3)\\\\& = (6x+3)/(3)\\\\& = (6x)/(3)+(3)/(3)\\\\& = 2x+1\end{aligned}

Part (c)


\begin{aligned}f(x) & = g(x)\\\\\implies 3x+2 & = (2x-1)/(3)\\\\3(3x+2) & = 2x-1\\\\9x+6 & = 2x-1\\\\7x & = -7\\\\\implies x & = -1\end{aligned}

User Hazmat
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories