129k views
14 votes
Helppp

The functions f and g are defined as follows:

Helppp The functions f and g are defined as follows:-example-1

2 Answers

4 votes

#a


\\ \rm\Rrightarrow f(-4)


\\ \rm\Rrightarrow 3(-4)+2


\\ \rm\Rrightarrow -12+2


\\ \rm\Rrightarrow -10

#b

#1


\\ \rm\Rrightarrow y=(2x-1)/(3)

  • Interchange x,y


\\ \rm\Rrightarrow x=(2y-1)/(3)

Find y


\\ \rm\Rrightarrow y=(3x+1)/(2)

Inverse is


\\ \rm\Rrightarrow g^(-1)(x)=(3x+1)/(2)

#2


\\ \rm\Rrightarrow gof(x)


\\ \rm\Rrightarrow g(f(x))


\\ \rm\Rrightarrow g(3x+2)


\\ \rm\Rrightarrow (2(3x+2)-1)/(3)


\\ \rm\Rrightarrow (6x+4-1)/(3)


\\ \rm\Rrightarrow (6x+3)/(3)

If we factor out


\\ \rm\Rrightarrow (2x+1)/(1)


\\ \rm\Rrightarrow 2x+1

#c


\\ \rm\Rrightarrow f(x)=g(x)


\\ \rm\Rrightarrow 3x+2=(2x-1)/(3)


\\ \rm\Rrightarrow 3(3x+2)=2x-1


\\ \rm\Rrightarrow 9x+6=2x-1


\\ \rm\Rrightarrow 7x=-7


\\ \rm\Rrightarrow x=-1

User Erik Tjernlund
by
3.7k points
4 votes

Answer:

Given functions:


f(x)=3x+2


g(x)=\left((2x-1)/(3)\right)

Part (a)


\begin{aligned}\implies f(-4) & = 3(-4)+2\\& = -12+2\\ & = -10\end{aligned}

Part (b)(i)


\begin{aligned}g(x) & =\left((2x-1)/(3)\right)\\\\\textsf{Swap }g(x) \textsf{ for }y : \\\implies y & = \left((2x-1)/(3)\right)\\\\\textsf{Make } x \textsf{ the subject}: \\\implies 3y & = 2x-1\\3y+1 & = 2x\\x & = (3y+1)/(2)\\\\\textsf{Swap }x \textsf{ for }g^(-1)(x) \textsf{ and }y \textsf{ for }x:\\\implies g^(-1)(x) & = (3x+1)/(2)\end{aligned}

Part (b)(ii)


\begin{aligned}gf(x) & = (2[f(x)]-1)/(3)\\\\& = (2(3x+2)-1)/(3)\\\\& = (6x+4-1)/(3)\\\\& = (6x+3)/(3)\\\\& = (6x)/(3)+(3)/(3)\\\\& = 2x+1\end{aligned}

Part (c)


\begin{aligned}f(x) & = g(x)\\\\\implies 3x+2 & = (2x-1)/(3)\\\\3(3x+2) & = 2x-1\\\\9x+6 & = 2x-1\\\\7x & = -7\\\\\implies x & = -1\end{aligned}

User Hazmat
by
2.8k points