163k views
3 votes
Una curva de radio R = 75 [m] tiene un peralte hecho de tal forma que un auto andando a v1 = 35 [m/s] no derrape incluso con el piso congelado (sin roce). ¿Cuál es el coeficiente de roce estático mínimo necesario entre las ruedas y el pavimento para que, en un día seco y soleado, el auto no derrape cuando avanza a v2 = 118 [m/s]?

User Ferdil
by
4.6k points

1 Answer

5 votes

Answer:

053.

Step-by-step explanation:

Given that the radius of curvature of the path, R = 75 m.

Speed of the car on that path ,
v_1 = 35 m/s

The centripetal force,
F_c acting on the body having mass, m, when it moves with the velocity v on curved path having radiusR

Ris
F_c = mv^2/R

Gravitational force,
F_g = mg.

Let tha angle of superelevation is
\theta.

As the car does not skid even with zero friction, so


mg\sin\theta = (mv_1^2)/2 \cos\theta


\Rightarrow \tan\theta = v_1^2/2g=\cdots(i)

On sunny day, let the minimun static friction coefficient between the wheels and the pavement is
\mu.

As
v_2 = 118 m/s is greater than v_so the car tends to skid in upper direction and the frictional

force,f, will acts is downward direction.

As there is no skidding, so


f+ mg\sin\theta= (m(v_2)^2)/R\cos\theta


\Rightarrow f=(m(v_2)^2)/R\cos\theta - mg\sin\theta

where
f= \mu N.


So, \mu = \frac {(m(v_2)^2)/R\cos\theta - mg\sin\theta}{N} \cdots(ii)

Where N is the normal reaction can be determined by balancing the force in perpendicular direction of the plane.


N= mg\cos\theta+\frac {m(v_2)^2}{R}\sin\theta

From equation (ii)


\mu = \frac {(m(v_2)^2)/R\cos\theta - mg\sin\theta}{mg\cos\theta+\frac {m(v_2)^2}{R}\sin\theta}


=(-g\tan\theta+v^2/R)/(v_2^2\tan\theta+g)


= \frac {(m(v_2)^2)/R\cos\theta - mg\sin\theta}{mg\cos\theta+\frac {m(v_2)^2}{R}\sin\theta}


=(-g(v_1^2/2g)+v^2/R)/(v_2^2(v_1^2/2g)+g)


= (v_2^2/R-v_1^2/R)/(g+v_2^2/R* v_1^2/Rg)


=(118^2/75-35^2/75)/(9.81+118^2/75* 35^2/(75* 9.81))

=0.53

Hence, the minimum coefficient of friction is 0.53.

User Zemunkh
by
5.5k points