Answer:
1.55
Explanation:
![2(x + 0.7) = 6(x – 0.8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/pgdy9ju1kuq3mwfsx39pxidzw9v6loeprj.png)
Using the distributive property of addition over multiplication we get
![2x+1.4=6x-4.8](https://img.qammunity.org/2021/formulas/mathematics/high-school/y96ksl0sfg5pj86eloejzj8yaemvxld07k.png)
Take the like terms to one side and change their signs accordingly
![1.4+4.8=6x-2x](https://img.qammunity.org/2021/formulas/mathematics/high-school/appxc6e1otwdbllbnn8oep8e81miov5ls6.png)
![\Rightarrow 6.2=4x](https://img.qammunity.org/2021/formulas/mathematics/high-school/21ivi8nkz15a8tn8rten4z0d2ddv6l1zg8.png)
![\Rightarrow x=(6.2)/(4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/grfq6svumcq4nnls5ma6it82h3yjjel0ua.png)
![\Rightarrow x=1.55](https://img.qammunity.org/2021/formulas/mathematics/high-school/kbxu7cexrn2dmqgbxzepu0kfmz4k8a9rby.png)
The value of
is 1.55.
In order to make sure this value is correct we can substitute the value of x in the equation
![2(1.55+0.7)=6(1.55-0.8)\\\Rightarrow 2* 2.25=6* 0.75\\\Rightarrow 4.5=4.5](https://img.qammunity.org/2021/formulas/mathematics/high-school/gz8llqlgmf2a8p1t3n280xdyax3kwnp6mn.png)
So, both sides are equal hence the value of
is 1.55.