Answer:
Because the land surface was then largely covered in ice, continental weathering effectively ceased. This locked the planet into a 'Snowball Earth' state until carbon dioxide released from ongoing volcanic activity warmed the atmosphere sufficiently to rapidly melt the ice cover. This model does not, however, explain one of the most puzzling features of this rapid deglaciation; namely the global formation of hundreds of metres thick deposits known as 'cap carbonates', in warm waters after Snowball Earth events.
The Southampton-led research, published in Nature Geoscience, now offers an explanation for these major changes in ocean chemistry.
Lead author of the study Dr Tom Gernon, Lecturer in Earth Science at the University of Southampton, said: "When volcanic material is deposited in the oceans it undergoes very rapid and profound chemical alteration that impacts the biogeochemistry of the oceans. We find that many geological and geochemical phenomena associated with Snowball Earth are consistent with extensive submarine volcanism along shallo
Step-by-step explanation: