Answer:
Correct answer: a) -8
Explanation:
Complex Numbers
A complex number z in polar form is expressed as
![z=r(\cos\theta+\mathbf{i}\sin\theta)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hepcm460ro9msw41rxwl07esius4mt81ef.png)
The nth power of a complex number in polar form is:
![z^n=r^n(\cos(n\theta)+\mathbf{i}\sin(n\theta))](https://img.qammunity.org/2021/formulas/mathematics/high-school/lxc7idsvr60fqfp9f0vd6k9h5s9vwrkdjg.png)
If the complex number is given in rectangular form
![z=x+\mathbf{i}y](https://img.qammunity.org/2021/formulas/mathematics/high-school/vw6o7jpukzshjjfukl66r22a4g0e41jke4.png)
then the values of r and θ are given by:
![r=√(x^2+y^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/dw5cb02frlnrmlqwuxltzq4wgaxsg7p5yu.png)
![\displaystyle \theta=\arctan\left((y)/(x)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kzkf6w7ffdwyi1cdk5eg0bbk0xm8gp62nq.png)
The given complex number is:
![z=1-\mathbf{i}√(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/sasfi4uzcyc53xuiepp4ny042kab3hzedj.png)
The value of r is:
![r=\sqrt{1^2+(-√(3))^2}](https://img.qammunity.org/2021/formulas/mathematics/high-school/5zuachfuxpr0i5rl62900a432tit2lik9v.png)
![r=√(1+3)=2](https://img.qammunity.org/2021/formulas/mathematics/high-school/i4a2pvbgrq7et267wyh7981d4h476cl9cv.png)
r=2
Calculating the angle:
![\displaystyle \theta=\arctan\left((-√(3))/(1)\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/df10nhgga1kitcvrk73gohdr02vac7k0l2.png)
![\displaystyle \theta=\arctan(-√(3))](https://img.qammunity.org/2021/formulas/mathematics/high-school/9a795b6pryscxqf9gcj5xnib1e0ow6ayo9.png)
Since the number is in the quadrant IV, the angle is:
![\theta=-60^\circ](https://img.qammunity.org/2021/formulas/mathematics/high-school/6m2xvfrvct94azeg7l7wl9l5lkho5wmf2w.png)
Thus, z is expressed in polar form as:
![z=2(\cos(-60^\circ)+\mathbf{i}\sin(-60^\circ))](https://img.qammunity.org/2021/formulas/mathematics/high-school/erd6q8bbegrp5caml546ch8lxb47o69pdy.png)
Calculating:
![z^3=2^3(\cos(-180^\circ)+\mathbf{i}\sin(-180^\circ))](https://img.qammunity.org/2021/formulas/mathematics/high-school/sr48ifc1nw4dbx6pqsi6t3cklqkjzaa9lr.png)
Given cos 180°=-1 and sin(-180°)=0
![z^3=8(-1+0)](https://img.qammunity.org/2021/formulas/mathematics/high-school/xcmf2mb6xe0mob6cddvo5k1dwtzticycwf.png)
![z^3=-8](https://img.qammunity.org/2021/formulas/mathematics/high-school/in725a3tye41dh9gdo24dyavq96lg72d30.png)
Correct answer: a) -8