206k views
1 vote
If z = 1 –StartRoot 3 EndRoot i, what is z^3? please help im stressed

a) -8

b) 8

c) -8i

d) 8i

User Moog
by
4.9k points

2 Answers

3 votes

Answer:

A

Explanation:

just finished test

User Sachink
by
4.3k points
2 votes

Answer:

Correct answer: a) -8

Explanation:

Complex Numbers

A complex number z in polar form is expressed as


z=r(\cos\theta+\mathbf{i}\sin\theta)

The nth power of a complex number in polar form is:


z^n=r^n(\cos(n\theta)+\mathbf{i}\sin(n\theta))

If the complex number is given in rectangular form


z=x+\mathbf{i}y

then the values of r and θ are given by:


r=√(x^2+y^2)


\displaystyle \theta=\arctan\left((y)/(x)\right)

The given complex number is:


z=1-\mathbf{i}√(3)

The value of r is:


r=\sqrt{1^2+(-√(3))^2}


r=√(1+3)=2

r=2

Calculating the angle:


\displaystyle \theta=\arctan\left((-√(3))/(1)\right)


\displaystyle \theta=\arctan(-√(3))

Since the number is in the quadrant IV, the angle is:


\theta=-60^\circ

Thus, z is expressed in polar form as:


z=2(\cos(-60^\circ)+\mathbf{i}\sin(-60^\circ))

Calculating:


z^3=2^3(\cos(-180^\circ)+\mathbf{i}\sin(-180^\circ))

Given cos 180°=-1 and sin(-180°)=0


z^3=8(-1+0)


z^3=-8

Correct answer: a) -8

User Larry Watanabe
by
6.1k points