Answer:
Mean=685
Variance=36.7
Explanation:
The mean of uniform discrete distribution can be expressed as the average of the boundaries
mean=( b+a)/2
The variance of uniform discrete distribution can be expressed as the difference of the boundaries decreased by 1 and squared, decreased by 1 and divided by 12.
σ²=[(b-a+1)^2 - 1]/12
We were given the wavelength from from 675 to 695 nm which means
a= 675, b= 695
We can now calculate the mean by using the expresion below
mean=( b+a)/2
Mean=( 675 + 695)/2
=685
The variance can be calculated by using the expression below
σ²=[(b-a+1)^2 - 1]/12
σ²=[(695-675+1)^2 -1]/12
σ²=440/12
σ²=36.7
Therefore, the the mean and variance, of the wavelength distribution for this radiation are 685 and 36.7 respectively