Solution:
Given that :
Volume flow is,
![$Q_1 = 1000 \ mm^3/s$](https://img.qammunity.org/2021/formulas/engineering/college/pbwtunstgsx3xynbqzljka6c1blbkb8w3o.png)
So,
![$Q_2= (1000)/(100)=10 \ mm^3/s$](https://img.qammunity.org/2021/formulas/engineering/college/m202ifdwfpclkp5i34vbpz7cdmrks7yf1u.png)
Therefore, the equation of a single straight vessel is given by
......................(i)
So there are 100 similar parallel pipes of the same cross section. Therefore, the equation for the area is
![$(\pi d_1^2)/(4)=1000 *(\pi d_2^2)/(4) $](https://img.qammunity.org/2021/formulas/engineering/college/kt5isumpmv4uzhal4ikxhegxa2bgv4sf48.png)
or
![$d_1=10 \ d_2$](https://img.qammunity.org/2021/formulas/engineering/college/z4mzka8szt3b21fq1ivwzziurfjfqe645p.png)
Now for parallel pipes
...........(ii)
Solving the equations (i) and (ii),
![$(H_(f_1))/(H_(f_2))=((8flQ_1^2)/(\pi^2 gd_1^5))/((8flQ_2^2)/(\pi^2 gd_2^5))$](https://img.qammunity.org/2021/formulas/engineering/college/mh7cbyr3kjdtwduihj54853ksm98uvofks.png)
![$=(Q_1^2)/(Q_2^2)* (d_2^5)/(d_1^5)$](https://img.qammunity.org/2021/formulas/engineering/college/zx0ehbpegutryz6krnenllsv387mle2uk4.png)
![$=((1000)^2)/((10)^2)* (d_2^5)/((10d_2)^5)$](https://img.qammunity.org/2021/formulas/engineering/college/pnzqmq1vjgsoq8emp6wf87203rsymovfgu.png)
![$=(10^6)/(10^7)$](https://img.qammunity.org/2021/formulas/engineering/college/zexvatkak17ux6r41mwx4mn6ho9mc5f7ev.png)
Therefore,
![$(H_(f_1))/(H_(f_2))=(1)/(10)$](https://img.qammunity.org/2021/formulas/engineering/college/4uhq4n3a18n1dx36mc2or9j4d7n3uw34pg.png)
or
![$H_(f_2)=10 \ H_(f_1)$](https://img.qammunity.org/2021/formulas/engineering/college/iu1gnq497nk50e3diyuwbmw9tq27zc5b8h.png)
Thus the answer is option A). 10