33.9k views
20 votes
Integration questions .

Integration questions .-example-1
User Tjjjohnson
by
7.8k points

1 Answer

1 vote

1)


\\\\\ \textbf{a)}\\\\~~~\displaystyle \int (6x- \sin 3x) ~ dx\\\\=6\displaystyle \int x ~ dx - \displaystyle \int \sin 3x ~ dx\\\\=6 \cdot \frac{x^2}2 - \frac 13 (- \cos 3x) +C~~~~~~~~~~~;\left[\displaystyle \int x^n~ dx = (x^(n+1))/(n+1)+C,~~~n \\eq -1\right]\\\\ =3x^2 +\frac{\cos 3x}3 +C~~~~~~~~~~~~~~~~~~~~;\left[\displaystyle \int \sin (mx) ~dx = -\frac 1m ~ (\cos mx)+C \right]\\


\textbf{b)}\\\\~~~~\displaystyle \int(3e^(-2x) +\cos (0.5 x)) dx\\\\=3\displaystyle \int e^(-2x) ~dx+ \displaystyle \int \cos(0.5 x) ~dx\\\\\\=-\frac 32 e^(-2x) + \frac 1{0.5} \sin (0.5 x) +C~~~~~~~~~~~~~~;\left[\displaystyle \int e^(mx)~dx = \frac 1m e^(mx) +C \right]\\\\\\=-\frac 32 e^(-2x) + 2 \sin(0.5 x) +C~~~~~~~~~~~~~~~~~;\left[\displaystyle \int \cos(mx)~ dx = \frac 1m \sin(mx) +C\right]\\\\\\=-1.5e^(-2x) +2\sin(0.5x) +C

2)


\textbf{a)}\\\\y = \displaystyle \int \cos(x+5) ~ dx\\\\\text{Let,}\\\\~~~~~~~u = x+5\\\\\implies (du)/(dx) = 1+0~~~~~~;[\text{Differentiate both sides.}]\\\\\implies (du)/(dx) = 1\\\\\implies du = dx\\\\\text{Now,}\\\\y= \displaystyle \int \cos u ~ du\\\\~~~= \sin u +C\\\\~~~=\sin(x+5) + C


\textbf{b)}\\\\y = \displaystyle \int 2(5x-3)^4 dx\\\\\text{Let,}\\~~~~~~~~u = 5x-3\\\\\implies (du)/(dx) = 5~~~~~~~~~~;[\text{Differentiate both sides}]\\\\\implies dx = \frac{du}5\\\\\text{Now,}\\\\y = 2\cdot \frac 1 5 \displaystyle \int u^4 ~ du\\\\\\~~=\frac 25 \cdot (u^(4+1))/(4+1) +C\\\\\\~~=\frac 25 \cdot \frac{u^5}5+C\\\\\\~~=(2u^5)/(25)+C\\\\\\~~=(2(5x-3)^5)/(25)+C

3)


\textbf{a)}\\\\y = \displaystyle \int xe^(3x) dx\\\\\text{We know that,}\\\\ \displaystyle \int (uv) ~dx = u \displaystyle \int v ~ dx - \displaystyle \int \left[ (du)/(dx) \displaystyle \int ~ v ~ dx \right]~ dx\\\\\text{Let}, u =x~ \text{and}~ v=e^(3x) .\\\\y= \displaystyle \int xe^(3x) ~dx\\\\\\~~= x\displaystyle \int e^(3x) ~ dx - \displaystyle \int \left[(d)/(dx)(x) \displaystyle \int e^(3x)~ dx \right]~ dx\\\\\\


=x\displaystyle \int e^(3x)~ dx - \displaystyle \frac 13 \int \left(e^(3x) \right)~ dx\\\\\\=\frac{xe^(3x)}3 - \frac 13 \cdot \frac{ e^(3x)}3+C\\\\\\= (xe^(3x))/(3)- (e^(3x))/(9)+C\\\\\\=(3xe^(3x))/(9)- \frac{e^(3x)}9 + C\\\\\\= \frac 19e^(3x)(3x-1)+C

User THE ONLY ONE
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories