187k views
2 votes
Unghiurile ∢AOB și ∢BOC sunt adiacente suplementare, iar OM, respectiv ON, sunt bisectoarele acestora. Fie BD ⊥ OM, D ∈ OM și BE ⊥ ON, E ∈ ON . Demonstrați că: a) patrulaterul BDOE este dreptunghi. b) OB ≡ DE .

1 Answer

5 votes

Answer:

Following are the solution to this question:

Explanation:


\angle AOB + \angle BOC = 180\\\\\angle MON = (\angle AOB + \angle BOC): 2 \\\\


= 180: 2 \\\\=(180)/(2)\\\\= 90^(\circ)

In point a:


\angle AOB = 60\\\\ \angle BOC = 120\\\\ \angle MON = (60 + 120): 2 \\\\


= 180: 2 \\\\=(180)/(2)\\\\= 90^(\circ)

In point b:


\angle BOC = 100\\\\\angle AOB = 80\\\\ \angle MON = (100 + 80): 2


= 180: 2 \\\\=(180)/(2)\\\\= 90^(\circ)

User Haotang
by
7.0k points