Answer:
Perimeter = 32.3
Area = 95.24
Explanation:
Given:
△ABC, m∠A=60°
m∠C=45°, AB = 9
To find:
Perimeter of △ABC
Area of △ABC
Solution:
Using angle sum property in a triangle:
m∠A + m∠B + m∠C = 180°
m∠B = 180° - 45° - 60° = 75°
As per Sine Rule:
![(a)/(sinA) = (b)/(sinB) = (c)/(sinC)](https://img.qammunity.org/2021/formulas/mathematics/college/e9nczdfc5k4s34br9up5wtf9p9zsaytrzw.png)
Where
is the side opposite to
![\angle A](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ro5v4ulqwms62zgk8kilypt6ikigafld2k.png)
is the side opposite to
![\angle B](https://img.qammunity.org/2021/formulas/mathematics/middle-school/8i4h48h1mlas636iyt733f8z9pve72x2b6.png)
is the side opposite to
![\angle C](https://img.qammunity.org/2021/formulas/mathematics/middle-school/50gml08sqqfzab4jephova9sjryrd57qen.png)
![(BC)/(sin60^\circ) = (AC)/(sin 75^\circ) = (AB)/(sin 45^\circ) \\\Rightarrow (BC)/((\sqrt3)/(2)) = (9)/((1)/(\sqrt2)) \\\Rightarrow BC = 12.73* 0.87 \\\Rightarrow BC = 11.08](https://img.qammunity.org/2021/formulas/mathematics/college/aqk6jp7j4yr60a4nrsohpxps4t06s4m6uu.png)
![\Rightarrow (AC)/(0.96) = (9)/((1)/(\sqrt2)) \\\Rightarrow AC = 12.73* 0.96 \\\Rightarrow AC = 12.22](https://img.qammunity.org/2021/formulas/mathematics/college/aycvmq8w75hfq9cm3xnfqfmgahiozboxvh.png)
Perimeter of △ABC = AB + BC + AC = 9 + 11.08 + 12.22 = 32.3
Area of a triangle is given as:
![\frac{1}2* ab sin(angle\ between\ a\ and\ b)](https://img.qammunity.org/2021/formulas/mathematics/college/rnii09v7nahj1he17nuivgg3hsjbiyukol.png)
![\Rightarrow (1)/(2)* AB* AC* sinA\\\Rightarrow 9* 12.22* sin 60\\\Rightarrow \bold{95.24}](https://img.qammunity.org/2021/formulas/mathematics/college/ogboegmpflitn0nls9qtniug2gqb8uclbx.png)