Answer:
ℝ - {(-2/3),(3/2)}
Explanation:
We want the domain of f(g(x)). So, firstly, we have to find the domain for g(x) and, then, for f(g(x)).
- Domain of g(x): Since the expression is a fracion, we must exclude the values of x that make null the denominator. Hence,
![g(x)=(x+5)/(2x-3)\Longrightarrow 2x-3\\eq 0\iff \boxed{x\\eq(3)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/i9vmla77uur68j3r0spjza90p7zkd7ocig.png)
- Domain of f(g(x)): We'll find its expression:
![f(x) = (3x-2)/(x+1)\\\\f(g(x)) = (3g(x)-2)/(g(x)+1)\\\\f(g(x)) = (3\cdot(x+5)/(2x-3)-2)/((x+5)/(2x-3)+1)=(~~~(3(x+5)-2(2x-3))/(2x-3)~~~)/(((x+5)+(2x-3))/(2x-3))\\\\f(g(x)) =(3(x+5)-2(2x-3))/((x+5)+(2x-3))=(3x+15-4x+6)/(x+5+2x-3)\\\\\boxed{f(g(x)) =(21-x)/(3x+2)}](https://img.qammunity.org/2021/formulas/mathematics/college/3kc3jsiygex147pq7vldzluj0umwxnrgbt.png)
Now, once again, we have to exclude the values of x that make the denominator equals to zero. Thus,
![f(g(x)) =(21-x)/(3x+2)\Longrightarrow 3x+2\\eq0\iff \boxed{x\\eq-(2)/(3)}](https://img.qammunity.org/2021/formulas/mathematics/college/xxn3q4458m1x8jvl79ofyfuxjkx0e5thuf.png)
Lastly, we may write the domanin of f(g(x)):
![D(f(g(x)) = \left]-\infty,-(2)/(3)\right[\cup\left]-(2)/(3),(3)/(2)\right[\cup\left](3)/(2),\infty\right[](https://img.qammunity.org/2021/formulas/mathematics/college/ve0xgruzvmpcgbdgehhhhfxo7wqd32dthd.png)
or, just writing in a shorter way:
![\boxed{D(f(g(x)) = \mathbb{R}-\left\{-(2)/(3),(3)/(2)\right\}}](https://img.qammunity.org/2021/formulas/mathematics/college/pixj833jdbnzri2kksou41ev95kew4imbg.png)