Answer:
![\displaystyle f'(1) = 6](https://img.qammunity.org/2021/formulas/mathematics/high-school/bqfu8jvt6mukcefydn2cfyt33drfn2j5pk.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/bz16ipe6p14y3f6abzxt2zy0j41tg530u9.png)
Derivative Property [Addition/Subtraction]:
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Explanation:
Step 1: Define
Identify
![\displaystyle f(x) = 5x - 1 + \ln x](https://img.qammunity.org/2021/formulas/mathematics/high-school/kocyb6fwjxtcow7df14p5d4ozohzuxugbh.png)
Step 2: Differentiate
- [Function] Derivative Property [Addition/Subtraction]:
![\displaystyle f'(x) = (d)/(dx)[5x] - (d)/(dx)[1] + (d)/(dx)[\ln x]](https://img.qammunity.org/2021/formulas/mathematics/high-school/kr7n1k6hn28gpzd9xqgjmbd653n4vjn4po.png)
- Rewrite [Derivative Property - Multiplied Constant]:
![\displaystyle f'(x) = 5 (d)/(dx)[x] - (d)/(dx)[1] + (d)/(dx)[\ln x]](https://img.qammunity.org/2021/formulas/mathematics/high-school/hc54egtlk1f950f30trrdyd5snszj2v28r.png)
- Derivative Rule [Basic Power Rule]:
![\displaystyle f'(x) = 5 - 0 + (d)/(dx)[\ln x]](https://img.qammunity.org/2021/formulas/mathematics/high-school/g3okfjje5legmp3t4pwd44fdv4wyh5y6zr.png)
- Logarithmic Differentiation:
![\displaystyle f'(x) = 5 + (1)/(x)](https://img.qammunity.org/2021/formulas/mathematics/high-school/t7hr8v5rw7xo81bkcb1dzc3eqjg60nn8b8.png)
- Substitute in x:
![\displaystyle f'(1) = 5 + (1)/(1)](https://img.qammunity.org/2021/formulas/mathematics/high-school/wqwwfkby6xqq0fl7ov82xmzk29a8n4z4i9.png)
- Simplify:
![\displaystyle f'(1) = 6](https://img.qammunity.org/2021/formulas/mathematics/high-school/bqfu8jvt6mukcefydn2cfyt33drfn2j5pk.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation