214k views
0 votes
Question 9 (5 points)

Which is the equation of the line for the points in the given table?
X
-4 2 6
y
13 -5 -17
On y= -2x-1
OB) y = -2x+5
OC) y = -2x - 5
OD) y=-3x + 1

Question 9 (5 points) Which is the equation of the line for the points in the given-example-1
User Taysia
by
8.7k points

1 Answer

3 votes

to get the equation of any straight line, we simply need two points off of it, let's use those two points from the table in the picture below.


(\stackrel{x_1}{-4}~,~\stackrel{y_1}{13})\qquad (\stackrel{x_2}{6}~,~\stackrel{y_2}{-17}) \\\\\\ \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-17}-\stackrel{y1}{13}}}{\underset{run} {\underset{x_2}{6}-\underset{x_1}{(-4)}}} \implies \cfrac{-30}{6 +4} \implies \cfrac{ -30 }{ 10 }\implies -3


\begin{array}c \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{13}=\stackrel{m}{-3}(x-\stackrel{x_1}{(-4)}) \\\\\\ y-13=-3(x+4)\implies y-13=-3x-12\implies y=-3x+1

Question 9 (5 points) Which is the equation of the line for the points in the given-example-1
User Ncoghlan
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories