188k views
23 votes
Solve √x-1= x-3. Check for extraneous solutions.

A.No solution
B.x=2,5
C.x=5
D.x=2

Answer is C x=5

User Monday
by
7.7k points

1 Answer

10 votes

Explanation:

so, "- 1" is also part of the square root ?

sqrt(x - 1) = x - 3

it is clear that for any value x < 1 we have no solution in R (as this makes the argument of the square root negative, and there is so real number solution for the square root of negative numbers).

now square the whole equation.

x - 1 = (x - 3)² = x² - 6x + 9

x² - 7x + 10 = 0

the general solution for quadratic equations is

x = (-b ± sqrt(b² - 4ac))/(2a)

in our case

a = 1

b = -7

c = 10

x = (7 ± sqrt(49 - 4×1×10))/(2×1) =

= (7 ± sqrt(49 - 40))/2 = (7 ± sqrt(9))/2

x1 = (7 + 3)/2 = 10/2 = 5

x2 = (7 - 3)/2 = 4/2 = 2

x2 is probably (given the answer options) not a valid solution for the original problem, as it represents the negative solution of sqrt(x - 1).

sqrt(2 - 1) = 2 - 3

± 1 = -1

remember, every square root has always 2 solutions : a positive and a negative one.

your teacher clearly only wanted the positive solution, which is x1 = 5.

so, yes,

C. x = 5

is the correct answer.

but please send your teacher my regards and comments. he/she has to state that only the positive solution to the square root is required/allowed.

because, formally, also x = 2 is a valid solution.

and therefore, C. AND D. are correct answers !!!!

User Junsu Cho
by
8.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories