Answer:
Explanation:
From the given information:
![R_(in) = ( (1)/(2) \ lb/gal) (6)\ gal /min \\ \\R_(in) = 3 \ lb/min](https://img.qammunity.org/2021/formulas/mathematics/college/z9x1flqhv3c6sabzdhmawbjss21bpg3987.png)
Given that the solution is pumped at a slower rate of 4gal/min
Then:
![R_(out) = (4A)/(100+(6-4)t)](https://img.qammunity.org/2021/formulas/mathematics/college/crlps3b0jh9jaay67ybl51ew9jjgeztxra.png)
![R_(out)= (2A)/(50+t)](https://img.qammunity.org/2021/formulas/mathematics/college/e962lct3en695v9szgby8kk7r6omvj7qmv.png)
The differential equation can be expressed as:
![(dA)/(dt)+ (2)/(50+t)A = 3 \ \ \ ... (1)](https://img.qammunity.org/2021/formulas/mathematics/college/wkx8816vd83pnbp1xjarqk3tw4amygqk5x.png)
Integrating the linear differential equation; we have::
![\int_c (2)/(50 +t)dt = e^{2In |50+t|](https://img.qammunity.org/2021/formulas/mathematics/college/yri9i617y8ncyksva25qailuw9l9qivdnt.png)
![\int_c (2)/(50 +t)dt = (50+t)^2](https://img.qammunity.org/2021/formulas/mathematics/college/bil4kosgp2wlqz3zymdxtzhuz4bz0de8zd.png)
multiplying above integrating factor fields; we have:
![(50 +t)^2 (dA)/(dt) + 2 (50 + t)A = 3 (50 +t)^2](https://img.qammunity.org/2021/formulas/mathematics/college/q25siuhu0un5159zgk46lf8gulfdznl0d1.png)
![(d)/(dt)\bigg [ (50 +t)^2 A \bigg ] = 3 (50 +t)^2](https://img.qammunity.org/2021/formulas/mathematics/college/68xc1kh6ejsyoesiikrdm1a2ixju1g2sv8.png)
![(50 + t)^2 A = (50 + t)^3+c](https://img.qammunity.org/2021/formulas/mathematics/college/pcjdkmvkjut9rmn2diwt9ampngxygsrmim.png)
A = (50 + t) + c(50 + t)²
Using the given conditions:
A(0) = 20
⇒ 20 = 50 + c (50)⁻²
-30 = c(50) ⁻²
c = -30 × 2500
c = -75000
A = (50+t) - 75000(50 + t)⁻²
The no. of pounds of salt in the tank after 35 minutes is:
A(35) = (50 + 35) - 75000(50 + 35)⁻²
A(35) = 85 -
![(75000)/(7225)](https://img.qammunity.org/2021/formulas/mathematics/college/kp9mzns9vswgmxq6x0zjze03ooi7zvrhwc.png)
A(35) =69.6193 pounds
A(35)
70 pounds
Thus; the number of pounds of salt in the tank after 35 minutes is 70 pounds.