Answer:
The 99% confidence interval for the proportion of ASD in Arizona is (0.014, 0.018).
Explanation:
The information provided is as follows:
![x=507\\n=32601\\\text{Confidence level }=99\%](https://img.qammunity.org/2021/formulas/mathematics/college/l2ejgceu3qoy1ygnniedo8g8r3nlxstmsx.png)
The sample proportion is:
![\hat p=(x)/(n)=(507)/(32601)=0.016](https://img.qammunity.org/2021/formulas/mathematics/college/nqak1tt1fmvksifx76xmyij4yimvr7em6w.png)
The critical value of z for 99% confidence level is, z = 2.56.
Compute the 99% confidence interval for the proportion of ASD in Arizona as follows:
![CI=\hat p\pm z_(\alpha/2)\cdot\sqrt{(\hat p(1-\hat p))/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/bwmrt0tr8dh0ksqjriq2tmi29db2pj8c1o.png)
![=0.016\pm 2.58\cdot\sqrt{(0.016(1-0.016))/(32601)}\\\\=0.016\pm 0.0018\\\\=(0.0142, 0.0178)\\\\\approx (0.014, 0.018)](https://img.qammunity.org/2021/formulas/mathematics/college/h5jx22uzqr5rrbb1eakudkfxgmrvbmkmww.png)
Thus, the 99% confidence interval for the proportion of ASD in Arizona is (0.014, 0.018).